
1

On Producing High and Early Result

Throughput in Multi-join Query Plans

Justin J. Levandoski, Member, IEEE, Mohamed E. Khalefa, Member, IEEE

and Mohamed F. Mokbel, Member, IEEE

Abstract

This paper introduces an efficient framework for producing high and early result throughput in

multi-join query plans. While most previous research focuses on optimizing for cases involving a

single join operator, this work takes a radical step by addressing query plans with multiple join

operators. The proposed framework consists of two main methods, a flush algorithm and operator

state manager. The framework assumes a symmetric hash join, a common method for producing early

results, when processing incoming data. In this way, our methods can be applied to a group of previous

join operators (optimized for single-join queries) when taking part in multi-join query plans. Specifically,

our framework can be applied by (1) employing a new flushing policy to write in-memory data to disk,

once memory allotment is exhausted, in a way that helps increase the probability of producing early

result throughput in multi-join queries, and (2) employing a state manager that adaptively switches

operators in the plan between joining in-memory data and disk-resident data in order to positively affect

the early result throughput. Extensive experimental results show that the proposed methods outperform

the state-of-the-art join operators optimized for both single and multi-join query plans.

I. INTRODUCTION

Traditional join algorithms (e.g., see [1], [2], [3]) are designed with the implicit assumption

that all input data is available beforehand. Furthermore, traditional join algorithms are optimized

to produce the entire query result. Unfortunately, such algorithms are not suitable for emerging

applications and environments that require results as soon as possible. Such environments call
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SELECT R.type,

AVG(R.rating+C.service+Z.value)

FROM YelpReview R,

CityPageData C,

ZagatData Z

WHERE R.city=”Minneapolis” AND

R.id=M.id AND

R.id=Z.id

GROUP BY R.type

(a) Query

+-----------------------+

|Percent completed: 45% |

+-----------------------+

type     | avg | confidence | interval

---------+-----+------------+----------

Chinese   4.345     93        0.12432

Mexican   4.119     95        0.11982

French    4.543     95        0.14453

Sushi     3.413     95        0.14873

(b) Answer with online aggregation

Fig. 1. Data integration query

for a new non-blocking join algorithm design that is: (1) applicable in cases where input data

is retrieved from remote sources through slow and bursty network connections, (2) optimized to

produce as many early results as possible (i.e., produce a high early result throughput) in a non-

blocking fashion, while not sacrificing performance in processing the complete query result, and

(3) operates in concert with other non-blocking operators to provide early (i.e., online) results

to users or applications. In other words, any blocking operation (e.g., sorting) must be avoided

when generating of online results.

Numerous system environments require a non-blocking join algorithm capable of adapting to

fluctuations of input arrival rates. As a prime example, data integration systems (e.g., Tukwila [4])

are databases built explicitly for processing queries over autonomous, remote (i.e., network-

bound) data sources. A popular example of a remote data source are web services [5], where

data is available through public a public web interface. Consider the query in Figure 1(a) in

a data integration environment asking about the average aggregated rating score per restaurant

type taken over the sum of three attributes from three different sources.

Note the following properties of this query. (1) The restaurant rating data is taken from three

distinct web services transmitted over a network, i.e., overall rating from Yelp, service rating

from City Pages, and value rating from Zagat. (2) The query necessitates a join between the three

sources based on restaurant id (or any unique identifier). (3) The query does not use a blocking

operation (e.g., sorting), but instead uses online aggregation [6], where the AVG operator is

able to start computation as tuples stream into the operator. Figure 1(b) depicts the result of the

online aggregation query, where averages are reported with a confidence and interval to reflect

their accuracy. In order to function in a non-blocking manner, the online aggregation operator

must receive tuples as soon as possible, meaning (a) the join operation must be non-blocking

and (b) the join must ideally maintain a high throughput while dealing with a potentially slow
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and bursty network connection, so that the answer accuracy reaches an acceptable threshold as

soon as possible. We note online aggregation operators must also receive tuples in random order

to guarantee statistical bounds. In most data integration environments, remote tuples are received

in random order. Furthermore, the join feeding the online aggregation operator must produce

result tuples in random order - a property followed by the methods we present in this paper.

Another vital motivating scenario is scientific experimental simulation. This scenario is

particularly interesting as (1) some large-scale scientific data is modeled as a stream, meaning

data may be generated on separate remote machines and transmitted to the query processor [7],

and (2) experiments may take up to several days to produce large-scale results due to the sheer

size of the input data. In such a setting, a join query should be able to function while the

experiment is running, and not have to wait for the experiment to finish. Furthermore, scientists

prefer to receive early feedback from long-running experiments in order to tell if the experiment

must halt and be restarted with different settings due to unexpected results. These early results

do not require a particular sort order [7], [8].

Other applications that necessitate the production of early results, and where are join

framework is applicable, include streaming applications [9], [10], workflow management [11],

parallel databases [12], spatial databases [13], sensor networks [14], [15], and moving object

environments [16].

Toward the goal of producing a high early result throughput in new and emerging online

environments as those just described, several research efforts have been dedicated to the

development of non-blocking join operators (e.g., see [17], [6], [18], [13], [19], [20], [21], [10],

[22]). However, with the exception of [18], these algorithms focus on query plans containing a

single join operator. Thus, the optimization techniques employed by these join operators focus

on producing a high early result throughput locally, implying that each operator is unaware of

other join operators that may exist above or below in the query pipeline. Optimizing for local

throughput does not necessarily contribute to the goal of producing a high overall early result

throughput in multi-join query plans.

In general, the ability of join queries to produce high early result throughput in emerging

environments lies in the optimization of two main tasks: (1) The ability to handle large input

sizes by flushing the least beneficial data from memory to disk when memory becomes exhausted

during runtime, thus allowing new input tuples to produce early results, and (2) The ability to
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adapt to input behavior by producing results in a state (e.g., in-memory or on-disk) that positively

affects early result throughput. In this paper, we explore a holistic approach to optimizing these

two tasks for multi-join query plans by proposing two methods that consider join operators in

concert, rather than as separate entities. The first method is a novel flushing scheme, named

AdaptiveGlobalFlush, that intelligently selects a portion of in-memory data that is expected to

contribute to result throughput the least. This data is written to disk once memory allotment for

the query plan is exhausted, thus increasing the probability that new input data will help increase

overall result throughput. The second method is a novel state manager module that is designed

to fetch disk-resident data that will positively affect result throughput. Thus, the state manager

directs each operator in the query pipeline to the most beneficial state during query runtime. These

two methods assume that symmetric hash join, a common non-blocking join operator [18], [19],

[22], is used to compute join results. This assumption makes the AdaptiveGlobalFlush method

and the state manager module compatible with previous operators optimized for single-join query

plans. Also, while these two methods are mainly designed to produce high early throughput in

multi-join query plans, they also ensure the production of complete and exact query results,

making them suitable for applications that do not tolerate approximations.

To the authors’ knowledge, the state spilling approach [18] is the only work to have considered

multi-join query plans. However, the work presented in this paper distinguishes itself from state-

spilling and all other previous work through two novel aspects. First, the AdaptiveGlobalFlush

algorithm attempts to maximize overall early result throughput by building its decisions over time

based on a set of simple collected statistics that take into account both the data input and result

output. Second, the state manager is a novel module that does not exist in previous work, and

is designed specifically for multi-join query plans. The state manager has the ability to switch

any join operator back and forth between joining in-memory data and disk-resident data during

runtime based on the operation most beneficial for the set of pipelined join operators to produce

early result throughput. When making its decision, the state manager module maintains a set

of accurate, lightweight statistics that help in predicting the contribution of each join operator

state. In general the contributions of this paper can be summarized as follows:

1) We propose a novel flushing scheme , AdaptiveGlobalFlush , applicable to any hash-based

join algorithm in a multi-join query plan. AdaptiveGlobalFlush helps produce high early

result throughput in multi-join query plans while being adaptive to the data arrival patterns.
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2) We propose a novel state manager module that directs each join operator in the query

pipeline to join either in-memory data or disk-resident data in order to produce high early

result throughput.

3) We provide experimental evidence that our methods outperform the state-of-the-art join

algorithms optimized for early results in terms of efficiency and throughput.

The rest of this paper is organized as follows: Section II highlights related work. Section III

presents an overview of the methods proposed in this paper. The AdaptiveGlobalFlush method

is described in Section IV. Section V presents the state manager module. Correctness of

AdaptiveGlobalFlush and the state manager is covered in Section VI. Experimental evidence

that our methods outperform other optimization techniques is presented in Section VII. Finally,

Section VIII concludes the paper.

II. RELATED WORK

The symmetric hash join [22] is the most widely used non-blocking join algorithm for

producing early join results. However, it was designed for cases where all input data fits in

memory. With the massive explosion of data sizes, several research attempts have aimed to extend

the symmetric hash join to support disk-resident data. Such algorithms can be classified into three

categories: (1) hash-based algorithms [4], [23], [19], [24], [20], [21] that flush in-memory hash

buckets to disk either individually or in groups, (2) sort-based algorithms [17], [25] in which

in-memory data is sorted before being flushed to disk, and (3) nested-loop-based algorithms [6]

in which a variant of the traditional nested-loop algorithm is employed. Also, several methods

have been proposed to extend these algorithms for other operators, e.g., MJoin [10] extends

XJoin [21] for multi-way join operators while hash-based joins have been extended for spatial

join operators [13]. However, these join algorithms employ optimization techniques that focus

only on the case of a single join operator, with no applicable extension for multi-join query

plans.

In terms of memory flushing algorithms, previous techniques can be classified to two

categories: (1) Flushing a single hash bucket. Examples of this category include XJoin [21]

that aims to flush the largest memory hash bucket regardless of its input source and RPJ [20]

that evicts a hash bucket based on an extensive probabilistic analysis of input rates. (2) Flushing

a pair of corresponding buckets from both data sources. Examples of this category include
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hash-merge join [19] that keeps the memory balanced between the input sources and state

spilling [18] that attempts to maximize the overall early result throughput of the query plan.

Our proposed AdaptiveGlobalFlush method belongs to the latter category, as flushing a pair of

buckets eliminates the need for extensive timestamp collection. Timestamps are necessary when

flushing a single bucket to avoid duplicate join results [20], [21].

A family of previous work can be applied to streaming environments where input data is

potentially infinite (e.g., [26], [27], [28]). Such algorithms aim to produce an approximate join

result based on either load shedding [29], [30] or the definition of a sliding window over incoming

streams [31], [32]. Since our methods are concerned with finite input and exact query results,

discussion of infinite data streams is outside the scope of this paper.

To the authors’ knowledge the closest work to ours is PermJoin [33] and the state-spilling

method [18]. PermJoin does not discuss specific methods for producing early results in multi-join

query plans, only a generic framework. The basic idea behind state spilling is to score each hash

partition group (i.e., symmetric hash buckets) in the query plan based on its current contribution

to the query result. When memory is full, the partition group with the lowest score is flushed to

disk. Once all inputs have finished transmission, the state-spill approach joins disk-resident data

using a traditional sort-merge join. Our proposed AdaptiveGlobalFlush method differs from the

state-spilling flush approach in that it is predictive, taking into account both input and output

characteristics to make an optimal flush decision. Furthermore, our proposed state manager is

not found previous work, as it continuously operates during query runtime to place operators in

an optimal state with regard to overall throughput. State-spill and other previous work consider

changing operator state only when sources block or data transmission has terminated.

III. OVERVIEW

This section gives an overview of the two novel methods we propose for producing a high

early result throughput in multi-join query plans. These methods are: (1) A new memory flushing

algorithm, designed with the goal of evicting data from memory that will contribute to the result

throughput the least, and optimized for overall (rather than local) early result throughput. (2) A

state manager module designed with the goal of placing each operator in a state that will

positively affect result throughput. Each operator can function in an in-memory, on-disk, or

blocking state.
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(a) Join Operation Overview
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(b) Example

Plan

Fig. 2. Join Overview and Example Query Plan

An overview of how our memory flushing algorithm and state manager can be added to

existing non-blocking hash-based join algorithms is given in the state diagram in Figure 2(a). As

depicted in the diagram, whenever a new tuple RS is received by the input buffer from source

S of operator O, the state manager determines how the tuple is processed. If O is currently

not in memory, the tuple RS will be temporarily stored in the buffer until O is brought back

to memory. Otherwise, RS will be immediately used to produce early results by joining it with

in-memory data. Initially, all join operators function in memory. Once memory becomes full,

the memory flushing algorithm frees memory space by flushing a portion of in-memory data

to disk. During query runtime, each join operator may switch between processing results using

either memory-resident or disk-resident data.

Memory Flushing. Most hash-based join algorithms optimized for early results employ a

flushing policy to write data to disk once memory is full. In a multi-join query plan, policies that

optimize for local throughput will likely perform poorly compared to policies that consider all

operators together to optimize for overall throughput. For example, given the plan in Figure 2(b),

if a local policy constantly flushes data from O1, then downstream operators (O2 and O3)

will be starved of data, degrading overall result throughput. We introduce a flushing policy,

AdaptiveGlobalFlush, that can be added to existing hash-based join algorithms when they take

part in a multi-join query plan. AdaptiveGlobalFlush opts to flush pairs of hash buckets, where

flushing a bucket from an input source implies flushing the corresponding hash bucket from the

opposite input at the same time. AdaptiveGlobalFlush evicts pairs of hash buckets that have the

lowest contribution to the overall query output, using an accurately collected set of statistics
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Hash Table A Hash Table B

hash(A)

(1)(2)

Source B

hash(B)

(1) (2)

Join Result

1

2

N

...

1

2

N

...

Source A

(a) Symmetric Hash Join

Before Merge

After Merge

Memory 

Results: (4,4), (6,6)

Disk 

Results: (1,1), (7,7)

Source A

h1 4 7 9 1 6

Source B

h1 1 4 2 6 7

a1,1 a1,2 b1,1 b1,2

Source A

h1 1 4 6 7 9

Source B

h1 1 2 4 6 7

(b) On-Disk Merge

Fig. 3. Join and Disk Merge Examples

that reflect both the data input and query output patterns. Details of AdaptiveGlobalFlush are

covered in Section IV.

State Manager. The main responsibility of the state manager is to place each join operator in

the most beneficial state in terms of producing high early result throughput. These states, as

depicted in Figure 2(a) by rectangles, are: (1) Joining in-memory data, (2) Joining disk-resident

data, or (3) Temporary blocking, i.e., not performing a join operation. As a motivating example,

consider the query pipeline given in Figure 2(b). During query runtime, sources A and B may

be transmitting data, while sources C and D are blocked. In this case, query results can only

be generated from the base operator O1. The overall query results produced by O1 rely on

the selectivity of the two operators above in the pipeline (i.e. O2 and O3). If the selectivity of

these operators is low, merging disk-resident data at either O2 or O3 may be more beneficial in

maximizing the overall result throughput than performing an in-memory join at the base operator

O1. Thus, the state manager may decide to place O3 in the in-memory (i.e., default) state, O2 in

the on-disk merge state, while O1 is placed in a low-priority state. Details of the state manager

are covered in Section V.

Architecture assumptions. We assume the in-memory join employs the symmetric hash join

algorithm to produce join results [22]. Figure 3(a) gives the main idea of the symmetric hash

join. Each input source (A and B) maintains a hash table with hash function h and n buckets.

Once a tuple r arrives from input A, its hash value h(r) is used to probe the hash table of B and

produce join results. Then, r is stored in the hash bucket h(rA) of source A. A similar scenario

occurs when a tuple arrives at source B. Symmetric hash join is typical in many join algorithms
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optimized for early results [19], [21], [22]. We also assume a join operator in the disk merge

state employs a disk-based sort-merge join to produce results (e.g., see [18], [19]). Figure 3(b)

gives an example of the sort-merge join in which partition group h1 has been flushed twice.

The first flush resulted in writing partitions a1,1 and b1,1 to disk while the second flush resulted

in writing a1,2 and b1,2. Results from joining disk-resident data are produced by joining (and

merging) a1,1 with b1,2 and a1,2 with b1,1. Partitions (a1,1, b1,1) and (a1,2, b1,2) do not need to be

merged, as they were already joined while residing in memory; the results produced from in-

memory and on-disk operations are labeled in Figure 3(b). Flushing partition groups and using

a disk-based sort-merge has the major advantage of not requiring timestamps for removal of

duplicate results [18], [19]. Thus, once a partition group is flushed to disk it is not used again

for in-memory joins.

In this work, we consider left-deep query plans with m binary join operators (m > 1) where

the base operator joins two streaming input sources while all other operators join one streaming

input with the output of the operator below. An example query plan is given in Figure 2(b).

We choose to study left-deep plans as they are common in databases. Our methods can apply

to bushy trees, where our flush algorithm and state manager can be applied to leaf nodes of

the plan. Future work will involve adapting our methods to non-leaf nodes in bushy multi-join

query plans. Further, an extension of our framework to the case of query plans consisting of

more than one m-way join operator is straightforward.

IV. MEMORY FLUSHING

In online environments, most join operators optimized for early throughput produce results

using symmetric hash join [19], [21], [22]. If memory allotment for the query plan is exhausted,

data is flushed to disk to make room for new input, thus continuing the production of early

results. In this section, we present the AdaptiveGlobalFlush algorithm that aims to produce

a high early overall throughput for multi-join query plans. As discussed in Section III, the

AdaptiveGlobalFlush policy flushes partition groups simultaneously (i.e., corresponding hash

partitions from both hash tables). The main idea behind AdaptiveGlobalFlush is to consider

partition groups across all join operators in concert, by iterating through all possible groups,

scoring them based on their expected contribution to the overall result throughput, and finally

flushing the partition group with the lowest score, i.e., the partition group that is expected to
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contribute to the overall result throughput the least.

In general, a key success to any flushing policy lies in its ability to produce a high result

throughput. In other words, the ability to flush hash table data that contributes the least to the

result throughput. To avoid the drawbacks of previous flushing techniques [18], [19], [20], we

identify the following three important characteristics that should be taken into consideration by

any underlying flushing policy in order to accurately determine in-memory data to flush:

• Global contribution of each partition group. Global contribution refers to the number of

overall results that have been produced by each partition group. In multi-join query plans,

the global contribution of each partition is continuously changing. For instance, any non-root

join in the plan is affected by the selectivity of join operators residing above in the operator

chain. These selectivities may change over time due to new data arriving and possibly being

evicted due to flushing. The ability to successfully predict the global contribution of each

partition group is a key to the success of a flushing policy in producing result throughput.

• Data arrival patterns at each join operation. Due to remote data transmission through

unreliable network connections, input patterns (i.e., arrival rates or delays) can significantly

change the overall throughput during the query runtime. For example, higher data arrival

rates imply that a join operator (and hence, its partition groups) will contribute more to

the overall throughput. Likewise, a lower data arrival rate implies less contribution to the

overall throughput. Thus, a flushing policy should consider the fluctuations of input patterns

in order to accurately predict the overall throughput contribution of a partition group.

• Data Properties. Considering data properties is important as they directly affect the

population, and hence the result production, for each partition group in a join operator. Such

properties could be join attribute distribution or whether the data is sorted. For instance,

if input data is sorted in a many-to-many or one-to-many join, a partition group j may

contribute a large amount to the overall result throughput within a time period T as data

in a sorted group (i.e., all have join attribute N ) may all hash to j. However, after time T

has passed, j may not contribute to the result throughput for a while, as tuples from a new

sorted group (i.e., with join attribute N + 1) now hash to different partition K. Therefore,

the flushing policy should be able to adapt during query runtime to data properties in order

to accurately predict the population of a partition group.
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Class Statistic Definition

Size prtSizeSj Size of hash partition j for input S

grpSizej Size of partition group j

tupSizeS Tuple size for input S

Input inputtot Total input count

uniquej No. unique values in part. group j

prtInputSj Input count at partition j of input S

Output obsLocj Local output of partition group j

obsGloj Global output of partition group j

TABLE I

STATISTICS

A. Adaptive Global Flush Algorithm

AdaptiveGlobalFlush is a novel algorithm that aims to flush in-memory hash partition

groups that contribute the least to the overall result throughput. The decisions made by

the AdaptiveGlobalFlush algorithm mainly depend on the three characteristics just discussed;

namely, global contribution, data arrival patterns, and data properties. The main idea of the

AdaptiveGlobalFlush algorithm is to collect and observe statistics during a query runtime to

help the algorithm choose the least useful partition groups to flush to disk. Flushing the least

useful groups increases the probability that new input data will continue to help produce results

at a high rate. We begin by discussing the statistical model that forms the “brains” behind the

decision made by AdaptiveGlobalFlush to evict data from memory to disk. We then discuss the

steps taken by AdaptiveGlobalFlush, and how it uses its statistical model, when flushing must

occur. Throughout this section, we refer to the running example given in Figure 4 depicting a

pipeline query plan with two join operators, JoinAB and JoinABC.

1) Statistics: The AdaptiveGlobalFlush algorithm is centered around a group of statistics

observed and collected during the query runtime (summarized in Table I). These statistics help

the algorithm achieve its ultimate goal of determining, and flushing, the partition groups with the

least potential of contributing to the overall result throughput. In general, the collected statistics

serve three distinct purposes, grouped into the following classes:

Size statistics. The size statistics summarize the data residing inside a particular operator at
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any particular time. For each operator O, we keep track of the size of each hash partition j at

each input S, denoted prtSizeSj . In Figure 4, the operator JoinAB has four partitions (i.e., two

partition groups) with sizes prtSizeA1 = 150, prtSizeB1 = 30, prtSizeA2 = 100, prtSizeB2 = 15.

We also track the size of each pair of partitions grpSizej , this value is simply the sum of the

symmetric partitions grpSizej = prtSizeAj + prtSizeBj . For example, in Figure 4, the size of

partition groups at JoinAB are grpSize1 = 150 + 30 = 180 and grpSize2 = 100 + 15 = 115.

Finally, we keep track of the tuple size for the input data at each source S, assuming the tuple

size is constant at each join input. In Figure 4, we observe a tuple size of tupSizeA=10 and

tupSizeB=8.

Input statistics. The input statistics summarize the properties of incoming data at each operator.

Due to the dynamic nature of data in an online environment, the input statistics are collected

over a time interval [ti,tj] (i < j) and updated directly after the interval expiration (we cover

these maintenance in Section IV-B). Specifically, for each operator O we track the total number

of input tuples received from all inputs, inputtot. Also, for each partition group j in operator O,

we track the statistic uniquej that indicates the number of unique join attribute values observed

in j throughout the query runtime. Finally, for each input S and hash partition j, we track the

number of tuples received at each partition j, prtInputSj . For the example in Figure 4, we

assume the following values have been collected over a certain period of time: inputtot = 100,

unique2 = 5, prtInputA2 = 6, and prtInputB2 = 4.

Output statistics. Opposite of the input statistics, the output statistics summarize the results

produced by the join operator(s). Like the input statistics, the output statistics are collected and

updated over a predefined time interval. Specifically, for each partition group j in each join

operator, we track two output statistics, namely, the local output (obsLocj) and the global output

(obsGloj). In a pipeline query plan, the local output of a join operator O is the number of tuples

sent from O to the join above it in the operator tree. In Figure 4, all tuples that flow from

JoinAB to JoinABC are considered local output of JoinAB. The collected statistic obsLocj

in operator O is the number of tuples in the local output of O produced by partition group j.

The collected statistic obsGloj is the number of tuples in the global output (i.e., the local output

of the root join operator, JoinABC in Figure 4), produced by partition group j. To track this

information, an identifier for the partition group(s) is stored on each tuple. Thus, each tuple stores

a compact list of identifiers of the partition groups where it “lived” during query runtime. We
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C

JoinAB

JoinABC

Result

A
150

B

100
301

2 15

AB
100

C

75
801

2 50

A B

Observed Values (JoinAB) Calculated Values (JoinAB)

N = 2,000
unique2 = 5
prtInputA2 = 6
prtInputB2 = 4
inputtot= 100

expPrtInputA2 = [2,000 * (6/100)]/10 = 12

B2 = [2,000 * (4/100)]/8 = 10

expLocPrtRsltA2 = (10 * 100)/5 = 200

expLocPrtRslt B2 = (12 * 15)/5 = 36

expLocRsltNEW2= (12*10)/5 = 24

expLocRslt2 = 200 + 36 + 24 = 260

expPrtInput

tupSize = 10A

tupSize = 8B

Fig. 4. Flush Example Plan

note that storing identifiers versus re-computing the join to find the original hash group (as done

in [18]) is a trade-off between storage overhead and computation costs. We choose the former

method, which is more suitable for larger tuples, whereas a hash group re-computation algorithm

can be implemented for smaller tuples. Once a tuple is output from the root join operator, it is

considered to contribute to the global output, and hence the observed global output values for

all the partition group identifier(s) stored on that tuple are incremented by one.

2) AdaptiveGlobalFlush Algorithm: The AdaptiveGlobalFlush algorithm takes as input a

single parameter N , representing the amount of memory that must be freed (i.e., flushed to

disk). The idea behind AdaptiveGlobalFlush is to evaluate each hash partition group at each

join operator and score each group based on its expected contribution to the global output. The

algorithm then flushes the partition group(s) with the lowest score until at least the amount of

memory N is freed and its data written to disk. We classify this process into four steps. In the

rest of this section, we provide the ideas and intuition behind each step, and finish by providing

a detailed look at the AdaptiveGlobalFlush algorithm.

Step 1: Input estimation. The input estimation step uses the input statistics (covered in

Section IV-A1) in order to estimate the number of tuples that will arrive at each operator input

hash partition group Sj until the next memory flush. Since each flushing instance aims to flush

enough tuples to free an amount N of memory, we know the next flush instance will occur after

tuples with a combined size of N enter the entire query plan. Thus, the goal of input estimation

is to predict where (i.e., which partition group) each of these new tuples will arrive. We note

that the size N encompasses both new tuples streaming into the query plan, and intermediate

results generated by joins lower in the operator tree. Estimating the number of tuples that will

arrive at each partition group is the first step in gaining an idea of how “productive” a each
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group will be.

Step 2: Local output estimation. The local output estimation step uses the size statistics and

input estimation from Step 1 in order estimate the contribution of each partition group to the

local output of its join operator until the next flushing instance. The intuition behind this step is

as follows. By tracking size statistics, we know, for each binary join operator, the size of each

partition j for each input A and B. Further, through input estimation, we have an idea of how

many new tuples will arrive at partition Aj and Ab. Thus, to calculate local output, this step

estimates a partitions contribution to the local output as the combination of three calculations:

(1) The output expected from the newly arrived tuples at partition Aj joining with tuples already

residing in partition Bj . (2) The output expected from the newly arrived tuples at partition Bj

joining with tuples already residing in partition Aj . (3) The output expected from the newly

arrived tuples at partition Aj joining with the newly arrived tuples at partition Bj .

Step 3: Partition group scoring. The partition group scoring step uses the observed output

statistics and the local output estimation from step 2 in order to score each partition group j

across all operators O, where the lowerst score implies that j is the least likely to contribute to

the overall global result output. The rationale for this score is to maximize the global output per

number of tuples in the partition group. For example, consider two partition groups, P with size

20 and Q with size 10, each having an expected global output of 25. In this case, Q would be

assigned a better score as it has a higher global output count per number of tuples. The intuition

behind this approach is that using local output estimation, we know how many local results will

be produced by each partition group j. Furthermore, through our observed output statistics, we

can form a ratio
obsLocj

obsGloj
that allows us to estimate how many of these local results will become

global results. Finally, we can normalize this estimated global contribution by the partition size

to derive a final score giving us the global output per partition size.

Step 4: Partition group flushing. The final partition group flushing step uses the scores from

the partition group scoring in step 3 to flush partition groups to disk. This step simply chooses

the lowest scoring partition group across all operators, and flushes it to disk. It iterates until

tuples totaling the size N have been flushed to disk.

Detailed Algorithm. We now turn to the details behind AdaptiveGlobalFlush. Algorithm 1

gives the pseudo-code for the algorithm, where each step previously outlined is denoted by a

comment. The algorithm starts by iterating over all partition groups within all operators (Lines 2
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Algorithm 1 AdaptiveGlobalFlush Algorithm
1: Function AdaptiveGlobalFlush(N)

2: for all Operators O do

3: A ← O.sideA; B ← O.sideB; SizeF lushed← 0

4: for all Partition Groups j ∈ O do

5: /* Step 1: Input estimation */

6: expPrtInputAj ← (N ·
prtInputAj

inputtot
)/tupSizeA

7: expPrtInputBj ← (N ·
prtInputBj

inputtot
)/tupSizeB

8: /* Step 2: Local output estimation */

9: expLocPrtRsltAj ←
(prtSizeAj ·expPrtInputBj)

uniquej

10: expLocPrtRsltBj ←
(prtSizeBj ·expPrtInputAj)

uniquej

11: expLocRsltNEWj ← (
expPrtInputAj ·expPrtInputBj

uniquej
)

12: expLocRsltj ← (expLocPrtRsltAj + expLocPrtRsltAj + expLocRsltNEWj)

13: /* Step 3: Partition group scoring */

14: expGloRsltj ← expLocRsltj (
obsGloj

obsLocj
)

15: grpScorej ←
expGloRsltj

grpSizej

16: end for

17: end for

18: /* Step 4: Partition group flushing */

19: while SizeF lushed ≤ N do

20: PSj ← partition group from input S with lowest grpScorej

21: Flush P to disk

22: SizeF lushed+ = sizeof(PSj)× tupSizeS

23: end while

to 4 in Algorithm 1).

Step 1 calculates an estimate for the number of new input tuples for each side S of the

partition group j, denoted as expPrtInputSj . This value is calculated by first multiplying the

expected input size of all tuples in the query plan N by the observed ratio that have hashed

to side S of j, formally prtInputSj/inputtot. Second, this value is divided by the tuple size

tupSizeS for input S to arrive at the number of tuples. As an example, in Figure 4, assuming

that N=2,000 the expected input for each partition in group 2 of JoinAB is: expPrtInputA2 =

[2000 × (6/100)]/10 = 12 and expPrtInputB2 = [2000 × (4/100)]/8 = 10, assuming a tuple

size of 10 and 8 at input A and B, respectively.

Step 2 (Lines 9 to 12 in Algorithm 1) estimates a partition group’s local output as follows.

(1) The output from new tuples arriving at side B hashing with existing data in partition side A

is computed by multiplying the two values expPrtInputBj (from step 1) and prtSizeAj (a size

statistic). However, to accommodate for the fact that a hash bucket j may contain up to uniquej
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different values, we divide the computed value by uniquej . As an example, in Figure 4, this

value for partition A2 at JoinAB is expLocPrtRsltA2 = (10 × 100)/5 = 200. (2) The output

from new tuples arriving at side A hashing with existing data in partition side B is computed in

a symmetric manner by exchanging the roles of A and B. For example, in Figure 4, this value

for partition B2 at JoinAB is expLocPrtRsltB2 = (12 × 15)/5 = 36. (3) The output estimate

from newly arrived tuples from both A and B is computed by multiplying expPrtInputAj by

expPrtInputBj and dividing by uniquej . For example, in Figure 4, this value for partition

group 2 at JoinAB is (12× 10)/5 = 24. Finally, the local output estimation for partition group

j, expLocRsltj is the sum of the previously three computed values. In the example given in

Figure 4, this value for partition group 2 at JoinAB is expLocRslt2 = 200 + 36 + 24 = 260

Step 3 (Lines 14 to 15 in Algorithm 1) proceeds by first estimating the global output of

partition group j (denoted expGloRsltj) by multiplying expLocRsltj by the ratio
obsLocj

obsGloj
. For

example, assume that in Figure 4, the global/local ratio for partition group 2 in JoinAB is 0.5

(i.e. half of its local output contributes to the global output). Then the expected global output

for this partition group is expGloRslt2 = 260/2 = 130. Finally, the algorithm assigns a score

(grpScorej) to partition group j by dividing the expected global output by the size of the

partition group (Line 15 in Algorithm 1).

In Step 4 (Lines 19 to 23 in Algorithm 1), the algorithm flushes partition groups with lowest

score, grpScorej , to disk until the desired data size N is reached.

B. Scoring Accuracy

The quality of the AdaptiveGlobalFlush algorithm depends on the accuracy of the collected

statistics. The size statistics (i.e., grpSizej and prtSizeSj) are exact as they reflect the current

cardinality that changes only when new tuples are received or memory flushing takes place. The

input statistic uniquej is exact as it reflects a running total of the unique join attributes that

arrive to partition group j. Also, we assume the statistics tupSizeS is static, i.e., that tuple size

will not change during runtime. However, other input statistics (i.e., prtInputSj and inputtot)

and output statistics (i.e., obsLocj , and obsGloj) are observed between a time interval [ti,tj]

(i < j). In this section, we present three methods, namely, Recent, Average, and EWMA for

maintaining such input and output statistics. Figure 5 gives an example of each method for the

statistic obsLocj over four observations made from time t0 to t4.
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Fig. 5. Statistic Maintenance Sample

Recent. Using this method, only the most recent observation is stored. In Figure 5, the Recent

method stores only the value 60 observed between time period t3 to t4. The main advantage of

this method is ease of use as no extra calculations are necessary. This method is not well suited

for slow and bursty behavior.

Average. In this method, the average of the last N observations is stored, where N is a predefined

constant. In Figure 5, the Average method stores the average of the last N = 3 observations

from time period t1 to t4, which is 77. The average method is straightforward as it considers

the last N time periods to model the average behavior of the environment. It does not adhere

to the fact that the recent behavior should weigh more than an old behavior.

Exponential Weighted Moving Average (EWMA). Using the EWMA method, each past

observation is aged as follows: If the statistic at time period ti has value stati while at the

time period [ti, ti+1], we observe a new value ObsV al, then the value of the collected statistic

is updated to be: stati+1 = α ∗ stati + (1 − α) ∗ ObsV al where α is a decay constant

(0 < α < 1). By choosing a smaller α, this method forgets past observations quickly and gives

a greater weight to recent observations. The opposite is true for a larger α. In Figure 5, the

EWMA method (with α=0.2) tracks all previous observations, but weights each new observation

by a factor of 0.8 while weighting old observed values by 0.2. The EWMA method along with

its parameter α gives more accurate model for statistic maintenance.

C. Discussion

The AdaptiveGlobalFlush algorithm is designed to produce a high overall throughput in multi-

join query plans by considering the three main characteristics mentioned at the beginning of this

section, namely, global contribution, data arrival patterns, and data properties. In terms of global

contribution, the usage of the collected statistics obsGloj (observed global output form j) and
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obsLocj (observed local output form j) enables us to continuously monitor the contribution of

each partition group j. In terms of data arrival patterns, the usage of the statistic prtInputSj (the

number of tuples expected to arrive at partition j for source S) and inputtot (the expected total

number of input tuples) allow the algorithm to accurately model data arrival patterns and hence

take them into account when predicting the global throughput of each partition group j. Finally,

this same statistic enables the flushing algorithm to accommodate different data properties, as

tracking input at the partition level allows the algorithm to predict where data will be arriving

(i.e., hashing) in each hash table.

The statistics collected and calculated by AdaptiveGlobalFlush are designed to be lightweight

due to its application in join processing. For instance, instead of calculating the exact intermediate

input for all non-base join operations coming from operator output lower in the query plan, we

track the input independently at each input using prtInputSj . By simplifying this statistical

tracking, the flushing algorithm does not have to derive correlation between partition groups at

each operator to calculate input to intermediate operators. As an example, consider a query plan

with three joins as given in Figure 6(b). In order calculate the intermediate input to JoinABCD,

we would need to derive the correlation between each partition group in JoinAB to the partition

groups in JoinABC (i.e., where tuples in partition group n of JoinAB will hash in JoinABC).

Similarly, the correlation between groups in JoinABC and JoinABCD is needed. While

calculating intermediate input this way would be more accurate than our approach, we feel

the trade off between accuracy and algorithmic complexity is important in this case.

Comparison to State-of-the-Art Algorithms. Other flushing algorithms used by the state-

of-the-art non-blocking join algorithms lack at least two of the three important aspects achieved

by the PermJoin. For example, state-spilling flushing [18] only considers global contribution

which is calculated based on the previous observed output, however, it does not adapt to data

arrival patterns or data properties that affect the global throughput during the query runtime. The

hash-merge join flushing algorithm [19] only considers data arrival patterns when attempting

to keep hash tables balanced between inputs, however, global contribution and data properties

are not taken into consideration. Finally, the RPJ flushing policy [20] adapts only to data arrival

patterns and data properties by using a probability model to predict data arrival rates at each

hash partition. However, global contribution is not considered by RPJ flushing. Furthermore, the

RPJ policy is designed only for single-join query plans with no straightforward extension for
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multi-join plans.

V. THE STATE MANAGER

While the goal of the AdaptiveGlobalFlush algorithm is to evict data from memory that

will contribute to the result throughput the least, the goal of the state manager is to fetch disk-

resident data that will positively affect result throughput. The basic idea behind the state manager

is, at any time during query execution, to place each operator in one of the following states:

(1) In-memory join, (2) On-disk merge, or (3) Temporarily blocking (i.e., waiting for a join

operator above in the pipeline to finish its merge phase). The state manager constantly monitors

the overall throughput potential of the in-memory and on-disk states for each join operator.

Overall throughput of intermediate operators (i.e., non-root operators) refers to the number of

intermediate results produced that propagate up the pipeline to form an overall query result,

whereas results at the root operator always contribute to the overall query result.

The state manager accomplishes its task by invoking a daemon process that traverses the

query pipeline from top to bottom. During traversal, it determines the operator O closest to the

root that will produce a higher overall throughput in the on-disk state compared to its in-memory

state. If this operator O exists, it is immediately directed to its on-disk merge state to process

results. Meanwhile, all operators below O in the pipeline are directed to temporary block while

all operators above O in the pipeline continue processing tuples in memory. Figure 6(a) gives an
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example of a pipeline where the state manger finds that join operator 13 is the closest operator

to the root capable of maximizing the query global throughput when joining disk-resident data

rather than in-memory data. Thus, the state manger directs 13 to the on-disk state while all the

operators above 13 (i.e., 14) are directed to join in-memory data and all operators below 13

(i.e., 11 and 12) are temporarily blocked.

The main rationale behind the state-manager approach is threefold. (1) Top-down traversal

serves as an efficiency measure by shortcutting the search for operators where disk-resident

operations are more beneficial to overall throughput than in-memory operations. (2) Each operator

in a query pipeline produces an overall throughput greater than or equal to the lower operators

in the query plan. Thus, increasing the overall throughput of an operator higher in the pipeline

implies an increase in the overall throughput of the multi-join query. For example, in Figure 6(a)

the state manager places 13 in the on-disk merge state without traversing the pipeline further, as

the overall result throughput contributions of 11 and 12 are bounded by 13, i.e., all intermediate

results produced by 11 and 12 must be processed by 13 before propagating further. Thus, the

overall result throughput produced by in-memory operations at 11 and 12 cannot be greater

than the overall in-memory throughput produced by 13. (3) While performing on-disk merge

operations multiple operators in the query plan (e.g., 13 and 12) could also benefit result

throughput, we feel placing a single operator in its on-disk state is sufficient due to the rationale

just discussed. Furthermore, a single operator performing an on-disk join limits context switches,

random I/O, and seeks that can result when multiple requests for disk operations are present.

In the rest of this section, we present the functionality behind the state manager. We first

provide the high-level state-manager algorithm. We then discuss the details behind the state

manager’s statistics and calculations. We finish with a discussion of the relative advantages of

the state manager.

A. State Manager Algorithm

Algorithm 2 provides the pseudo code for the state manager module. As previously mentioned,

the state manager algorithm performs a top-down traversal of all join operators in the pipeline.

At each operator O, it compares the potential overall throughput for the in-memory and on-disk

states. If the on-disk state is found to have a greater potential overall throughput at an operator

O, the state manager directs O to the on-disk merge state immediately. All operators above O
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Algorithm 2 State Manager
1: Function StateManager()

2: O ← root join operator , mergeGroup← φ

3: /* Stage 1 - Evaluate states */

4: while mergeGroup = φ AND O 6= φ do

5: memThroughput← memThroughput(O) {Sec V-B1}

6: diskThroughput← Max(dskThroughput(j)) by iterating through all disk partition groups j ∈ O {Sec V-B2}

7: if ((diskThroughput× dskConst) > memThroughput) then

8: mergeGroup← diskThroughput.j

9: else

10: O ← next operator in pipeline

11: end if

12: end while

13: /* Stage 2 - Direct operators */

14: if O = φ then

15: for all Operators O3 in Pipeline do O3.state=IN-MEMORY

16: else

17: O.merge = mergeGroup,O.state = ON-DISK

18: for all Operators O1 above O do O1.state=IN-MEMORY

19: for all Operators O2 below O do O2.state=BLOCK

20: end if

remain in the in-memory state, while all operators below O are directed to temporarily block.

In general, the state manager executes in two main stages (1) Evaluate states and (2) Direct

operators. We now outline the functionality of each stage.

Stage 1: Evaluate states. The evaluate states stage performs a top-down traversal of the query

plan, starting at the root operator (Line 2 in Algorithm 2). For the example given in Figure 6(b),

the algorithm would traverse from JoinABCD down to JoinAB. The traversal ends when either

an operator is found to switch to the on-disk state, or all operators have been visited (Line 4

in Algorithm 2). For the current operator O, the algorithm compares the overall throughput

produced by the in-memory state to the throughput for the on-disk merge state (Lines 5 to 7

in Algorithm 2). Details behind in-memory and on-disk throughput calculations are covered

shortly in Section V-B. This process begins by first calculating the in-memory throughput for O

(Line 5 in Algorithm 2). The on-disk merge state can only process one disk-resident partition

group at a time. Thus, when comparing the on-disk throughput to in-memory throughput, the

algorithm iterates over all disk-resident partition groups j in O to find the j that will produce

a maximal overall disk throughput (Line 6 in Algorithm 2). The algorithm then compares the
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overall throughput for an on-disk merge to the overall in-memory throughput for operator O.

Since producing join results from disk is much slower than producing join results from memory,

the state manager accounts for this fact by multiplying the calculated disk throughput by a

disk throughput constant, dskConst. The value dskConst is a tunable database parameter, and

represents the maximum amount of tuples per time period (e.g., 1 second) that can be read

from disk (Line 7 in Algorithm 2). If the on-disk throughput is maximal, the algorithm will

mark the disk partition group (Line 8 in Algorithm 2). By marking j, the algorithm ends the

traversal process and moves to the next stage. If the algorithm does not mark a partition group,

the traversal continues until all operators have been visited.

Stage 2: Direct operators This stage of the algorithm is responsible for directing each operator

in the query pipeline to the appropriate state based on the analysis in stage 1. Stage 2 starts by

checking if the traversal in stage 1 found an operator O to move to the on-disk state (Line 14

in Algorithm 2). If this is not the case, all operators in the query pipeline are directed to the

in-memory state (Line 15 in Algorithm 2). Otherwise, we will direct O to its on-disk state where

it is asked to merge the marked disk partition group from stage 1 (Line 17 in Algorithm 2).

Also, all operators above O in the pipeline will be directed to the in-memory state while all

operators below O in the pipeline will be directed to block (Lines 18 to 19 in Algorithm 2).

B. Throughput Calculation

From the high-level overview, we can see the core of the state manager is based on an

accurate estimate of the throughput potential for the on-disk and in-memory states of each join

operator in the query plan. We now cover the statistics and calculations necessary to estimate

these throughput values.

1) Memory Throughput: The overall result throughput produced by the in-memory state at op-

erator O can be estimated as the sum of all observed global output values for its partition groups.

Formally, this estimation is calculated as: memThroughput(O) = memConst(
∑|O|

j=1 obsGloj)

where |O| represents the number of partition groups in operator O and obsGloj is the observed

global output estimate over a predefined time interval (using a method from Section IV-B) for

a partition group j in O (see Table I). Much like our disk constant dskConst presented in Stage

1 of the state manager algorithm, the memory throughput calculation uses a tunable parameter

memConst that models the maximum number of results that can be produced in-memory over a
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constant time period (e.g., 1 second).

2) Disk Throughput: The on-disk merge state allows only one disk-resident partition group

to be merged at a time, meaning the overall disk throughput at an operator O is represented by

the disk group that produces the maximal overall throughput when merged. Thus, the overall

disk throughput estimation is done per disk-resident group.

Collected statistics. The disk throughput calculation relies on two exact statistics (i.e., they are

not maintained using methods from Section IV-B). First, a size statistic that maintains, for each

operator, the number of disk-resident tuples from input S for each partition j (dskSizeSj). As

with in the in-memory size statistics, dskSizeSj is an exact statistic as it represents the current

cardinality. The other collected statistic maintains the current number of local results expected

from an operator O if it were to merge a disk partition group j (dskLocRsltj). The statistic

dskLocRsltj is initially set to zero, increases with every flush of partition group j, and reset to

zero when the disk partition group j is merged. Upon flushing partition group j (with sides A

and B) to disk, the statistic dskLocRsltj is increased by the number of results expected to be

produced by j which can be computed as follows: The flushed partition from side B (partSizeBj;

a collected in-memory size statistic), must eventually join with data already residing on disk (from

a previous memory-flush) from side A (dskSizeAj; a collected on-disk size statistic) while the

flushed partition from A (partSizeAj) joins with disk-resident data from B (dskSizeAj). These

estimations are possible because data is flushed in partition groups; new data being flushed from

one partition side has not yet joined with disk-resident data from the other side. Since a partition

group may contain tuples with multiple join attributes, the expected result must be divided by the

unique number of join attributes observed in the partition group (uniquej; a collected in-memory

input statistic). Formally, the statistic dskLocRsltj is increased by the following value when a

flush occurs: ((dskSizeAj×partSizeBj)+(dskSizeBj×partSizeAj))/uniquej . As an example,

in Figure 6(b) (assuming uniquej = 5), if partition group 1 from JoinABCD were to be flushed

to disk, the statistic dskLocRslt1 would be increased by: ((140 × 60) + (300× 10))/5 = 2280.

Overall disk throughput calculation Estimating the overall disk throughput for merging a disk

partition group j involves two steps. The first step calculates the expected global output for the

merge (dskGloRsltj). Similar to the computation made by the AdaptiveGlobalFlush algorithm,

we can derive this value by multiplying the expected local output (dskLocRsltj; a collected

on-disk statistic) by the observed global/local output ration (obsGloj/obsLocj; a collected in-
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memory statistic). Formally, this equation is: dskGloRsltj = dskLocRsltj×(obsGloj/obsLocj).

In Figure 6(b), the global/local output ratio at JoinABCD is 1, as it is the root join operator.

Therefore, if dskLocRslt1 = 2280 for partition group 1 at JoinABCD, then dskGloRslt1

is also 2280. The second step involves calculating a value for the number of global results

expected per tuples read from disk. This calculation is similar to the scoring step of the

AdaptiveGlobalFlush algorithm as we divide the expected global throughput by the size of

the expected data read from disk. Formally, this equation for overall disk throughput is:

dskThroughput(j) = (dskGloRsltj/(dskSizeAj +dskSizeBj)). As an example, in Figure 6(b)

(assuming dskLocRslt1 = 2280), the expected disk throughput for partition group 1 at

JoinABCD is dskThroughput(ABCD1) = (2280/(300 + 60)) = 6.33. It is important to

note that since producing join results from disk is much slower than producing join results from

memory, the estimation for the throughput of an on-disk merge must be bounded by the time

needed to read data from disk. In Section V-A, we described how the state manager accounts

for this bound using the tunable parameter dskConst that represents disk throughput.

C. Discussion

One main goal of join algorithms optimized for early result throughput is the ability to produce

results when sources block. When an operator is optimized for a single-join query plans, the

decision to join data previously flushed to disk is straightforward as it is used to produce results

only when both sources block [19], [20]. For multi-join queries, the state-spilling algorithm [18]

does not consider using disk-resident data to produce results while input is streaming to the query.

Disk-resident data is used by state-spilling in its cleanup phase, producing results when all input

has terminated. Our proposed state manager goes beyond the idea of using disk-resident data

only in the cleanup phase by invoking the disk merge operation when it is expected to increase

the overall result throughput of the query. In this regard, the state manager is a novel algorithm

for multi-operator query plans that considers the use of disk-resident data to maintain a high

result throughput outside the cleanup phase.

If the state manager finds that the on-disk state can produce a greater overall throughput than

the in-memory state at an operator O, it immediately directs O to enter its on-disk state. While

this case is certainly true when both inputs to the operator O block, it may be true otherwise.

For instance, input rates at operator O may slow down, decreasing its ability to produce overall
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results. If the operator O is not a base operator, then one of these input rates is directly affected

by the throughput of an operator located below in the pipeline. Thus, merging disk-resident data

at operator O is beneficial if it is guaranteed to generate tuples that will increase the overall

result throughput.

Also, we note that the design rationale behind the state manager is fundamentally different than

that of the AdaptiveGlobalFlush algorithm presented in Section IV. With AdaptiveGlobalFlush,

the goal is to predict the least valuable in-memory data to flush to disk in order for the query

to run effectively. Due to the nature of the input data in emerging environments (i.e., remote

transfer, no pre-processing), data that was flushed to disk at one point may turn out to be

valuable at a later point during query runtime. Thus, the rationale behind the state manager is

to implement an efficient algorithm that uses a top-down query plan traversal in order to find

and use disk-resident data that becomes beneficial to the overall throughput.

Input Buffering. The state manager is able to place an operator in an on-disk or blocking

state even if data is still streaming into the query plan at or below the on-disk operator. One

consequence of this freedom is buffer overrun, i.e., exhausting the buffer memory for incoming

tuples. One method to avoid buffer overrun is to ensure that switching operators to the on-disk

and blocking phase will not cause buffer overrun. Using our collected statistics, we can easily

perform this check. Let BufSpace be the available space in the buffer. Further, let DskTime be the

time necessary to perform an on-disk merge. DskTime can be calculated as the time needed to read

an on-disk partition group j. Using our disk size statistics, this value is
dskSizeAj+dskSizeBj

dskConst
, where

dskConst is our tunable parameter modeling disk throughput. Also, recall from Section IV-A1

that we measure (over time interval [ti,tj]) the incoming count to each partition j for each join

input S as prtInputSj . Let InputSum be the sum of all prtInputSj values for partitions residing

in join operators at or below the operator about to be placed in an on-disk state. Then, we can

model the time until the next buffer overrun as BufT ime = (tj−ti)BufSpace

InputSum
. Then, the state

manager can reliably place the operators in the on-disk and blocking states without the threat

of a buffer overrun if the value BufTime is greater than DskTime.

Cleanup. Because the AdaptiveGlobalFlush algorithm and the state manager are designed

for multi-join query plans, results that are not produced during the in-memory or on-disk phase

require special consideration. In this vein, we outline a cleanup process for each operator that is

compatible with our framework to ensure that a complete result set is produced. In this phase,
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each operator begins cleanup by flushing all memory-resident data to disk after receiving an

end-of-transmission (EOT) signal from both inputs. After this flush, all disk-resident partition

groups are merged, producing a complete result set for that operator. The order of operator

cleanup is important, due to the top-down dependency of pipeline operators. An example of this

dependency is given in Figure 6(b). In order for JoinABC to produce a complete result set, it

must receive all input from source C and JoinAB before beginning the cleanup phase. Cleanup

order starts at the base operator and ends at the root of the query plan. To enforce cleanup order,

we assume each operator in the chain can send an EOT signal to the next pipeline operator after

completing its cleanup phase.

VI. CORRECTNESS

The correctness of both AdaptiveGlobalFlush, and the state manager can be mapped to

previous work. In terms of producing all results, we use symmetric hash join to produce in-

memory results. Further we flush partition groups and use a variance of sort-merge join to produce

disk results. Using these methods ensures that a single operator will produce all results [18],

[19]. Furthermore, using these methods also ensures that a single operator will produce a unique

result exactly once in either the in-memory or on-disk states [19]. If the base operator in a query

plan guarantees production of all results exactly once, the ordered cleanup phase ensures that all

results from the base operator will propagate up the query plan. It follows that the this cleanup

phase ensures that using our methods in a multi-join query plan will produce all results exactly

once.

VII. EXPERIMENTAL RESULTS

This section provides experimental evidence for the performance of the AdaptiveGlobalFlush

algorithm and the state manager, by implementing them along with symmetric hash join [22].

We compare this implementation to optimizations used by the state-of-the-art non-blocking join

operators optimized for multi-join queries (i.e., state-spill [18]) as well as single-join queries

(i.e., Hash-Merge Join (HMJ) [19] and RPJ [20]). Unless mentioned otherwise, all experiments

use three join operations with four inputs A, B, C, and D as given in Figure 6(b). All input

arrival rates exhibit slow and bursty behavior. To model this behavior, input rates follow a

Pareto distribution; widely used to model slow and bursty network behavior [34]. Each data
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Fig. 8. Maintenance methods

source contains 300K tuples with join key attributes uniformly distributed in a range of 600K

values, where each join key “bucket” is assigned to a source with equal probability. Thus, given

M total join key buckets assigned to each join input S, there will be X (X < M ) overlapping

join key buckets and (M − X) non-overlapping join key buckets at each operator. Memory for

the query plan is set to 10% of total input size. For our propsed methods, statistical maintenance

(see Section IV-A1) is performed every five seconds (t = 5), a value determined in initial tuning

experiments not included for space reasons. For flushing policies, the percentage of data evicted

is constant at 5% of total memory.

The outline of this section is as follows. Section VII-A studies the effect of different main-

tenance methods. Section VII-B studies performance in environments with different data input

behavior. Section VII-C studies the memory needs for producing early results. Section VII-D tests

different data flush sizes. Section VII-E studies the effect of join ratios. Finally, Section VII-F

studies the scalability for query plans with a large number of joins.

A. Maintenance Methods

This set of experiments studies the effect of different maintenance methods on the performance

of our methods. First, we study the effect of different α values when using the Exponential

Weighted Moving Average (EWMA) method for managing statistics. Second, we study the impact

of each maintenance method presented in Section IV-B.

Different α Values. Figure 7(a) gives the performance of each α value for the default input

behavior. Throughout the rest of this section, the subscript B represents slow/bursty input, while

S represents a steady input at 200 tuples/sec. In this environment, the α value of 0.5 helps

maintain a steady throughput performance to the first 500K results, while other values lead to
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fluctuation in performance. Figure 7(b) gives the performance of each α value when inputs A,

B, and C are slow and bursty, while D is steady. Here, the α value of 0.5 still provides the

best performance. Due to this outcome, in rest of this section all experiments using the EWMA

method will have a default α value of 0.5.

Different Maintenance Methods. Figure 8(a) gives the performance of each maintenance

method for the default input behavior. In these experiments, the average method uses an N

value of 5, while the EWMA method uses an α value of 0.5. The EWMA method gives the best

performance as it produces a stable overall early throughput. The average and recent methods

show relative performance degradation while producing the first 40K results. Figure 8(b) gives

the performance of each method when inputs A, B, and C exhibit slow and bursty behavior, while

input D is steady, confirming that the EWMA method delivers the most consistent performance.

B. Input Behavior

Figure 9 gives the performance of AdaptiveGlobalFlush and the state manager (abbr.

AGF+SM) compared to that of state-spill, HMJ, and RPJ when run in environments with

four different input behaviors. In these tests, we focus on the first 100K results produced,

corresponding to early query feedback. Figure 9(a) gives the results for the default behavior

(all inputs slow/bursty), and demonstrates the usefulness of AGF+SM. AdaptiveGlobalFlush is

able to keep beneficial data in memory, thus allowing incoming data to produce a better overall

early throughput. Meanwhile the state manager helps to produce results due to the slow and

bursty input behavior where sources may block. The state-spill flush policy does not adapt to the

slow and bursty input behavior in this case, and thus flushes beneficial data to disk early in the

query runtime. Also, state-spill does not employ a state manager that is capable of finding on-

disk data at each operator to help produce results. State-spill only invokes its disk phase once all

inputs terminate. HMJ and RPJ, optimized for single-join queries, base their flushing decisions

on maximizing output locally at each operator. However, these flushing policies are unaware of

how data at each operator is being processed by subsequent operators in the pipeline, causing

tuples to flood the pipeline that are unlikely to produce results higher in the query plan. HMJ

invokes its disk phase once both inputs to an operator block. However, in a multi-join query,

this scenario will likely occur only at the base operator, as one input for each intermediate

operator is generated from a join operation residing below in the pipeline. In this case, disk
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results from the base operator can be pushed upward in the pipeline that will not produce results

at subsequent operators, and cause flushing to occur higher in the pipeline when inputs are

blocking, also degrading performance. On the other hand, RPJ performs better than HMJ due to

its ability to switch from memory to disk operations based on its statistical model that predicts

local throughput. For multi-join queries, a state manager is needed to manage processing at all

operators in concert.

Figures 9(b) through 9(d) give the performance of AGF+SM compared to state-spill HMJ, and

RPJ for three, two, and one input(s) exhibiting slow and bursty behavior, respectively. In this left-

right progression, as the the inputs exhibit more of a steady behavior, the disk phase is used less,

allowing us to pinpoint the relative behavior of each flushing policy only. While the performance

of each algorithm converges from left to right, AGF+SM consistently outperform state-spill by

at least 30%, RPJ by 40%, and HMJ by 45%, in producing early results. AGF+SM also exhibit

a constant steady behavior in both slow/bursty and steady environments. Finally, we note that

these experiments show the benefit of optimization techniques for multi-join query plans, due to

the performance of state-spill and AGF+SM compared to that of RPJ and HMJ. Also, due to the
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similar behavior of HMJ and RPJ compared to state-spill and AGF+SM, subsequent experiments

use only HMJ to represent algorithms optimized for single-join query plans.

C. Memory Size

Figure 10 gives the time needed for AGF+SM, state-spill, and HMJ to produce 100K results

for query plan memory sizes 5% above and below the default memory size (i.e., 10%) for

two different environments. Figures 10(a) and 10(b) give the performance for inputs exhibiting

the default behavior, while figures 10(c) and 10(d) give the performance for inputs A and B

exhibiting steady behavior while C and D are slow and bursty. For smaller memory (Figures 10(a)

and 10(c)), flushing occurs earlier causing more flushes during early result production. In

this case, AdaptiveGlobalFlush is able to predict beneficial in-memory data and keep it in

memory in order to maintain a high early overall throughput. Furthermore, when all inputs

are slow/bursty (Figure 10(a)), the state manager helps in early result production. With larger

memory (Figures 10(b) and 10(d)), more room is available for incoming data, hence less flushing

occurs early, meaning the symmetric-hash join is able to process most early results when memory

is high. For both input behaviors, state-spill and AGF+SM perform relatively similar early on

when more memory is available. Meanwhile, HMJ performs relatively better for a larger memory

sizes, but its flushing and disk policy are still a drawback in multi-join query plans when inputs

are slow/bursty compared to a steady environment.

D. Data Flush Size

Figure 11 give the performance for different data flush sizes. Figure 11(a) shows the time

needed to produce the first 100K results when smaller and larger percentages of total memory
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are evicted per flush operation, while Figure 11(b) focuses on the specific case of 10% data

flush. When the percentage is very low (1%), flushes occur often, causing delays in processing.

In general, writing less data to disk (in a reasonable range) during a flush operation leads to a

greater amount of early results as more data is available in-memory for arriving tuples. However,

more overall flush operations are performed during query runtime leading to a large number of

buckets on disk with low cardinality, which is less beneficial to the disk-merge phase. Writing

more data to disk during a flush should lead to less amount of early results as less in-memory

data is present for arriving tuples, while less flushes will be performed overall. Both state-spill

and HMJ produce less early results in this case. However, AGF+SM performance remains stable.

The reason for this performance is mainly due to the state manager. When AdaptiveGlobalFlush

is required to write more tuples to disk at every flush, the state manager is able to quickly reclaim

beneficial data to produce early results.

E. Join Ratio

Figure 12(a) gives the time period for the PermJoin and state-spill algorithms in producing

the first 100K results with a small join ratio of 1:2 at each operator, meaning the output at each

operator is double the size of its input. The input behavior is set to steady for all inputs, to test

each algorithm’s reaction to join ratio. The PermJoin algorithm performs well due to the ability

of the AdaptiveGlobalFlush algorithm to predict beneficial partition groups and keep them in

memory, thereby filling the query pipeline with data expected to aggregate to the overall result.

The state-spill algorithm has lower relative performance, as partition groups at each operator

generally contribute less to the overall early throughput. Figure 12(b) gives the time period for

both algorithms in producing the first 400K results with a large join ratio (1:4). We focus on

400K results here as a larger join ratio implies a large number results will be produced early. In

this case, PermJoin and state-spill perform relatively well through the first 200K results. Since

flushing occurs often with a large join ratio, the difference in the PermJoin and state-spill flushing

algorithms can be seen after the first 200K results.

F. Scalability

Figure 13 gives the time needed for AGM+SM and state-spill to produce the first 15K results

in 5-join (6 inputs) and 6-join (7 inputs) query plans. In these tests, HMJ was omitted as
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no results were produced in the first 120 seconds. Due to the higher selectivity from more

join operations, we plot the first 15K results as cleanup begins earlier (steep slopes in figures)

than in previous experiments. Here, AGF+SM is able to delay the cleanup phase longer. If the

AdaptiveGlobalFlush algorithm makes an incorrect decision and flushes beneficial data at an

intermediate operator, the state manager is able to propagate these beneficial tuples by placing

each operator in the in-memory or on-disk state in order to produce more results before cleanup.

The state-spill algorithm does not make use of disk-resident data while producing these early

results. Furthermore, state-spill relies only on its flushing algorithm that scores partition groups

based on global vs. local contribution over size. This scoring method generally does not perform

well with a large number of joins where selectivity is high in slow/bursty environments. Here,

the ability to predict beneficial data in both the flush algorithm and disk states is important.

Thus, state-spill exhibits lower relative performance in these cases.

VIII. CONCLUSION

This paper introduces a framework for producing high early result throughput in multi-join

query plans. This framework can be added to existing join operators optimized for early results by

implementing two novel methods. First, a new flushing algorithm, AdaptiveGlobalFlush, flushes

data predicted to contribute to the overall early throughput the least by adapting to important input

and output characteristics. This adaptation allows for considerable performance improvement over

the methods used by other state-of-the-art algorithms optimized for early results. Second, a novel

module, termed a state manager, adaptively switches each operator in the multi-join query plan

to process results in two states (in-memory or on-disk) to maximize the overall early throughput.

The state manager is a novel concept, as it is the first module to consider the efficient use of
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disk-resident data in producing early results in multi-join queries. Extensive experimental results

show that the proposed methods outperform the state-of-the-art join operators optimized for both

single and multi-join query plans in terms of efficiency, resilience to changing input behavior,

and scalability when producing early results.
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