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Abstract— Personalized database systems give users answers
tailored to their personal preferences. While numerous preference
evaluation methods for databases have been proposed (e.g.,
skyline, top-k, k-dominance, k-frequency), the implementation
of these methods at the core of a database system is a double-
edged sword. Core implementation provides efficient query pro-
cessing for arbitrary database queries, however this approach is
not practical as each existing (and future) preference method
requires a custom query processor implementation. To solve
this problem, this paper introduces FlexPref, a framework for
extensible preference evaluation in database systems. FlexPref,
implemented in the query processor, aims to support a wide-
array of preference evaluation methods in a single extensible
code base. Integration with FlexPref is simple, involving the
registration of only three functions that capture the essence of
the preference method. Once integrated, the preference method
“lives” at the core of the database, enabling the efficient execution
of preference queries involving common database operations. To
demonstrate the extensibility of FlexPref, we provide case studies
showing the implementation of three database operations (single
table access, join, and sorted list access) and five state-of-the-art
preference evaluation methods (top-k, skyline, k-dominance, top-
k dominance, and k-frequency). We also experimentally study
the strengths and weaknesses of an implementation of FlexPef
in PostgreSQL over a range of single-table and multi-table
preference queries.

I. INTRODUCTION

Embedding preferences in or on-top of databases has helped

realize non-trivial applications, ranging from multi-criteria

decision-making tools to personalized databases [1]. Prefer-

ence queries give users interesting answers by evaluating their

personal wishes according to a certain preference method. In

the literature, there exist a large number of preference evalua-

tion methods, including top-k [2], skylines [3], hybrid multi-

object methods [4], k-dominance [5], k-frequency [6], ranked

skylines [7], k-representative dominance [8], distance-based

dominance [9], ǫ-skylines [10], and top-k dominance [11]. In

general, the point of proposing new preference methods is to

challenge the notion of “best” answers. Since the concept of

“best” is subjective, there is theoretically no limit to the num-

ber of new preference methods that can be proposed. Given

the large number of preference methods already proposed,

and likely to be created in the future, a fundamental issue

behind each method is how it can handle arbitrary queries

in a database management system (DBMS) that may contain

selection, aggregation, and/or join operations.
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The most common approach for preference evaluation in

database systems is the on-top approach where the preference

method is realized as either a stand-alone program or as

a database user-defined function. This approach treats the

DBMS as a “black box”, where the preference evaluation

method is completely decoupled from the database, and hence

not concerned with internal database operations (e.g., joins)

necessary to retrieve the data (e.g., see [4], [5], [6], [7],

[8], [9], [10], [11]). The main advantage of this approach is

its simplicity as it only requires the implementation of the

preference evaluation method in a separate code base outside

the core database engine. However, the efficiency of this

approach is limited as it cannot interact with database internal

operations, and hence cannot optimize the database query

processor to be advantageous to the preference evaluation

method [12], [13]. Furthermore, preference evaluation methods

may be created assuming that data exists in a specific format

(e.g., non-standard index), unaware of how data is physically

stored or retrieved from the database.

A much more efficient approach for preference evaluation in

database systems is the built-in approach that tightly couples

preference evaluation with the query processor by creating

optimized, customized, database operations (e.g., selection,

aggregation, and join) for each preference method. The ef-

ficiency of this approach over the on-top approach is obvious

from the extensive work of injecting ranking and top-k queries

inside the database engine for selection queries [14], [2], join

queries [15], and sorted list access [16], [17]. However, it is not

practical to develop a database system that handles each exist-

ing and future preference method. Given the amount of effort

needed to inject top-k operations in database systems [18],

it would be hard to replicate this effort for each preference

method. From a practical standpoint, supporting each distinct

preference method in this manner is impossible for actual

database systems, commercial or otherwise.

In this paper, we present FlexPref; an extensible frame-

work for preference evaluation in database systems. FlexPref

represents a centrist approach to preference implementation

that combines the simplicity of the on-top approach with the

efficiency of the built-in approach. The simplicity of FlexPref

comes from the fact that integrating a new preference method

involves the registration of only three functions that capture the

essence of the preference method. The efficiency of FlexPref

comes from the fact that once a preference method is inte-

grated with the system, it “lives” at the core of the database,

coupled with the database engine and its query processor,
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enabling the efficient execution of preference queries involving

common database operations.

As depicted in Figure 1, FlexPref is implemented inside

the PostgreSQL [19] query processor, and is extensible to

arbitrary preference methods. Injecting a preference method

into the database requires the implementation of only three

functions (outside PostgreSQL) that are then registered with

FlexPref. These functions are designed to: (a) specify rules for

when a tuple is “preferred” and (b) define rules for how items

are added to a current set of preferred objects. Requiring the

implementation of only three functions, preference evaluation

methods are easier to implement in FlexPref compared to the

built-in approach. In fact, FlexPref requires orders of mag-

nitude less code. For example, implementing a simple single

table skyline evaluation algorithm from scratch in PostgreSQL

takes an order of 2,000 lines of code, while with FlexPref

embedded in PostgreSQL, skyline implementation is on the

order of 300 lines of code.

FlexPref results in efficient realization of preference meth-

ods inside the database engine, similar to that of the built-in

approach. The main idea is that we tightly couple FlexPref

with database operations in a customized manner. For example,

we design single table access, join, and sorted list access

operations that are customized to FlexPref. Then, any prefer-

ence method registered with FlexPref is seamlessly integrated

with the FlexPref framework, that is in turn coupled with the

query processor. As depicted in Figure 1, it is important to

note that only FlexPref touches the query processor while

each new preference method is “plugged into” the frame-

work. FlexPref raises two fundamental questions regarding

the efficient execution of arbitrary preference queries: (1) Is

FlexPref more efficient than the on-top approach? The answer

is yes; coupling database operators with general preference

criteria implies that a query processor can be optimized to

perform early pruning by disregarding data that has no chance

of being in a preferred answer set. Such an optimization is

not possible with the on-top approach. (2) Is FlexPref more

efficient than the built-in approach?. The answer, invariably,

is no. Implementing specialized database operations for a

specific preference method (e.g., top-k join) will always be

more efficient than the generalized extensible case of FlexPref.

However, it is impractical to have specialized implementations

for each preference method. We equate this argument to pre-

vious research comparing generalized indexes (e.g., Gist [20])

to that of specialized indexes (e.g., B-tree [21], R-Tree [22]).

We demonstrate the functionality of FlexPref through three

database operations, namely, single table access, joins, and

sorted list access, that are designed to handle any arbitrary

preference method integrated in FlexPref. We also provide

case studies for integrating five non-trivial, state-of-the-art

preference methods within FlexPref, namely, Skyline [3],

Top-k [2], Top-k dominating [11], K-dominance [5], and K-

frequency [6]. FlexPref has the potential to provide further

functionality beyond the operations discussed in this paper,

as it lays the groundwork for further non-trivial, extensible

support for preference evaluation in databases, such as special

query optimization techniques, uncertain data processing, and

indexing. The idea is that any new functionality will need to

be realized only once for the FlexPref framework, instead of

re-implementing it for each preference method. We provide ex-

perimental evidence examining the strengths and weaknesses

of FlexPref, implemented in PostgreSQL, using our three main

operations and five case studies, compared to on-top and built-

in approaches.

The rest of this paper is organized as follows. Section II cov-

ers related work. Section III describes the usage of FlexPref.

The details of the generic functions of FlexPref are described

in Section IV. Section V covers preference evaluation in

FlexPref through three main database operations. Five case

studies of FlexPref are discussed in Section VI. Experimental

evaluation of FlexPref is given in Section 7 while Section 8

concludes this paper.

II. RELATED WORK

Preference methods. Many methods have been proposed

for evaluating user preferences over relational data. The two

methods receiving the most attention in the literature are

skyline [3], [23], [24] and top-k [25], [2], [15], [26]. Other

methods have been proposed that evaluate preference queries

in a manner different to skyline and top-k, aiming to enhance

the quality of the answer. Examples of these methods include,

but are not limited to, hybrid multi-objective methods [4],

k-dominance [5], k-frequency [6], ranked skylines [7], k-

representative dominance [8], distance-based dominance [9],

ǫ-skylines [10], and top-k dominance [11]. In this paper, we do

not propose a new preference evaluation method. Rather, the

goal of FlexPref is to provide a single generalized, extensible

preference evaluation framework that allows the integration

of any of these preference methods inside a database query

processor.

Preference in databases. Much work has gone into em-

bedding the notion of preference in database systems from

both the modeling and implementation aspects. The modeling

aspect is concerned more with the theoretical foundation of

preference expressions over relational data [27], [28], [29],

[30], [1], [31]. In some cases, the model provides rules that

define how the model translates into traditional SQL queries.

For example, query personalization [1], [32], [33] models

preferences using a relational graph, where preferred attributes

and relations are given a degree of interest score. Using

this graph, SQL queries are injected with the top-k prefer-

ences derived from the graph. Meanwhile, PreferenceSQL [30]

provides new SQL constructs for expressing preference by

defining rules for combining preferences in a cascading or

pareto-accumulation manner. Later work defined rules for

translating PreferenceSQL into traditional SQL queries [34].
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Other work has explored modeling contextual preferences,

where the objective is to evaluate preferences that change

based on a user’s situation [35], [36], [37].

In terms of preference method implementation, many pro-

posed algorithms are not designed to integrate with ad-hoc

relational queries involving joins, aggregation, etc [4], [5],

[6], [7], [8], [9], [10], [11]. They are implemented “outside-

the-box”: completely outside the DBMS or as user-defined

functions that sit on-top of a query plan. The closest work to

ours investigates integrating preference evaluation algorithms

within a database query processor. To this extent, there has

been work integrating top-k preferences with selection [3],

[2] and join queries [15], and skylines for join queries [15].

Conversely, we do not study custom implementations. FlexPref

aims to support any preference method inside the database en-

gine in a general, extensible manner. The FlexPref framework

is completely novel in this regard.

III. USING FLEXPREF

In this section, we show how to: (a) register a new pref-

erence method in FlexPref, and (b) how to query a database

system, e.g., PostgreSQL, that is equipped with FlexPref.

A. Adding A Preference Method to FlexPref

Adding a preference evaluation method to FlexPref requires

the implementation of three functions outside the database en-

gine. The details of these functions are covered in Section IV.

Once implemented, the preference method is registered using

a DefinePreference command, formally:

DefinePreference [Name] WITH [File]

The name argument is the name of the preference method,

while the file argument specifies the file containing the func-

tion definitions. DefinePreference compiles the preference

code into our framework. This process is depicted in Figure 1

for a preference method “MyPref”.

B. Querying FlexPref

Once a preference method is registered with FlexPref, it can

be used in database queries immediately. FlexPref requires the

extension of the SQL syntax in order to select the appropriate

preference methods and specify their objectives. In this sec-

tion, we will first describe the general skeleton of SQL queries

in FlexPref, and then describe the specific arguments for our

five case studies of preference methods.

1) Query Skeleton: FlexPref adds a Preferring and

Using clause to conventional SQL in order to issue preference

queries. A typical query in FlexPref is:

Select [Select Clause]

From [Tables]

Where [Where Clause]

Preferring [Preference Attributes]

Using [method] With [Parameter]

Objectives [Objective]

Here, the method (with objectives) specified in the Using

clause is responsible for selecting the preference evalua-

tion method to be applied over the attributes given in the

Preferring clause.

2) Five Case Studies: Using the query skeleton of Flex-

Pref, we now give use case examples for five state-of-the-

art preference methods, namely, skyline [3], top-k [2], top-k

dominating [11], k-dominance [5], and k-frequency [6]. These

preference methods are used throughout the rest of this paper

to demonstrate the functionality of FlexPref.

Case Study I: Skyline. The skyline preference method returns

objects in a data set that are not dominated by (i.e., not strictly

worse than) any other object in the data. An example query

using the skyline method is:

Select * From Restaurant R Preferring
R.price d1 AND R.dist d2 AND R.rating d3

Using Skyline

With Objectives MIN d1, MIN d2, MAX d3;

This query will evaluate the skyline of restaurant data, where

the preference objectives require minimizing both price and

distance attributes, while maximizing rating.

Case Study II: Top-k dominating. The top-k dominating

method ranks each object Q based on how many other objects

it dominates, and returns the k objects with the highest score.

Given the same preference attributes as the previous query, the

Using clause for top-k dominating is:

Using Top-K-Domination With K=2

Objectives MIN d1, MIN d2, MAX d3;

Here, the Using clause specifies that: (1) K=2 answers are

required and (2) Preference is based on minimizing both price

and distance attributes, while maximizing rating.

Case Study III: K-Dominance. The k-dominance method re-

defines the traditional skyline dominance definition to consider

only k dimensional subspaces, where k is less than or equal

to the total number of preference attributes. The Using clause

for k-dominance is:

Using K-Dominance With K=2

Objectives MIN d1, MIN d2, MAX d3;

For this case, the minimize/maximize objectives are similar to

that of top-k domination and skylines. However, K specifies

the number of dimensions used to check for dominance be-

tween objects. This is in contrast to usual definition of k that

specifies the number of desired answers.

Case Study IV: K-Frequency. The k-frequency method ranks

objects based on their dominance count in all possible dimen-

sional subspaces, and returns the k objects with the minimal

scores. The Using clause for k-dominance is:

Using K-Frequency With K=2

Objectives MIN d1, MIN d2, MAX d3;

The objectives are the same as that of the top-k domination.

However, k-frequency evaluates these objectives in a different

manner in order to retrieve the “best” objects.

Case Study V: Top-k The top-k method scores each object by

combining the object’s attributes using a monotonic ranking

function (e.g., summation) that returns a single real value. The

k objects with the best scores are considered preferred objects.

The using clause for the top-k method is:

Using Top-K With K=2

Objectives MIN F(d1,d2,d3);

In this clause, K=2 answers are required, while the objective is

to minimize an object score using monotonic ranking function

F combining preference attributes d1, d2, and d3.
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IV. FLEXPREF GENERAL FUNCTIONS

This section provides the details of the three general func-

tions necessary to implement a preference method in FlexPref.

To register a certain preference method, e.g., a skyline, the user

needs to implement these three functions and populate them in

the core of FlexPref using the DefinePreference command

described in Section III-A. These functions are robust, as they

can be used by FlexPref for various efficient query processing

techniques as will be described in Section V. We also give

five case studies of how these functions can be realized for

various preference methods in Section VI.

Before discussing the three functions, we describe two

definitions that will be used by our functions and the query

processing techniques in Section V

• #define DefaultScore: Each object in FlexPref is

associated with a score that is internal to the underlying

preference method. It is provided by FlexPref so that the

preference method may track the “quality” of each tuple

during execution. Defining a default score ensures that

each object is assigned a value.

• #define IsTransitive: Indicates whether the method

is transitive or not. That is, given objects a, b, and c, if

a is qualitatively “better” than b, and b is “better” than c,

then a is always “better” than c. Knowledge of transitivity

leads to efficiency, as FlexPref can discard objects during

query execution if transitivity holds.

Three general functions need to be implemented by each

preference method to be registered with FlexPref.

• PairwiseCompare(Object P, Object Q): Given

two data objects P and Q, update the score of P and

return 1 if Q can never be a preferred object, −1 if P

can never be a preferred object, 0 otherwise.

• IsPreferredObject(Object P, PreferenceSet

S): Given a data object P and a set of preferred objects

S, return true if P is a preferred object and can be

added to S, false otherwise.

• AddPreferredToSet(Object P, PreferenceSet

S): Given a data object P and a preference set S, add

P to S and remove or rearrange objects from S, if

necessary.

These functions break down preference evaluation into a

set of modular operations that need not be aware of query

processor specifics. FlexPref abstracts preference evaluation

into two main operations: (1) pairwise comparison of two

objects (PairwiseCompare) and (2) comparison of an object

with one ore more objects in the current preference set

(IsPreferredObject). Though these two functions could

be enough for preference registration, FlexPref also provides a

third manipulation function, AddPreferredToSet, to allow

maximum flexibility and efficiency for the implemented prefer-

ence method. For example, each preference method may keep

the set S sorted in a manner advantageous to the execution of

IsPreferredObject. For preference methods that require k

answers, AddPreferredToSet has the ability to add a new

object while removing an old object to ensure that only k

objects exist in S.

In terms of the scope, FlexPref is able to support a range of

qualitative (i.e., skyline) and quantitative (e.g., top-k/ranking)

preference methods, as will be discussed in Section VI. If any

preference method can reliably define answers by comparing

tuples pairwise and/or comparing a tuple to a current preferred

set, then it is supported by FlexPref. In general, we envision

any preference model/method whose semantics define impera-

tive steps that determine whether a tuple is preferred will work

in FlexPref.

V. PREFERENCE EVALUATION IN FLEXPREF

This section explores the details of preference

evaluation in FlexPref that uses the three main

functions, PairwiseCompare, IsPreferredObject,

and AddpreferredToSet, described in Section IV. We will

first present single table access, i.e., selection queries over

single table, in FlexPref in Section V-A. Then, in Section V-B

we discuss how FlexPref is optimized to process multi-table

queries, i.e., join queries. Finally, we discuss a query case

when the input is represented as a set of sorted lists (i.e.,

indexes) in Section V-C. Without loss of generality, the

examples throughout the rest of this paper use numeric data.

However, FlexPref is compatible with methods for preference

evaluation over other data types (e.g., partially-ordered

domains [38]).

A. Single-Table Access

Single table access selects a set of preferred objects from a

single table. All the query examples given in Section III refer

to a single table access where the objective is to retrieve the

set of preferred restaurants, according to a certain preference

criteria, where all the information is stored in a single table R.

We propose a block-nested loop (BNL) algorithm to execute

single-table preference evaluation. We assume data is not

indexed, thus a BNL algorithm is necessary (index access is

discussed in Section V-C). The main idea is to compare tuples

pairwise while incrementally building a preferred answer set.

During execution, a data object P may be found to be domi-

nated (i.e., guaranteed never to be a preferred answer). If the

underlying preference method is transitive, P is immediately

discarded and not processed further, thus leading to more

efficient execution.

Algorithm 1 outlines the main steps of single-table prefer-

ence evaluation in FlexPref. Underlined functions and defini-

tions refer to those functions and definitions that should be

implemented separately for each preference method registered

with FlexPref, as described in Section IV. While simple, this

single execution framework is very powerful as it can ac-

commodate myriad preference evaluation methods. As proof,

Section VI will cover the implementation of five state-of-

the-art preference methods in this framework with execution

examples. It is important to note here that Algorithm 1 is

generic in the sense that it executes without knowledge of the

general preference function details.

The input to Algorithm 1 is a reference to a single database

table T while the output is the final set of preferred objects

S. The algorithm begins by initializing the preference set
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Algorithm 1 Single Table Access in FlexPref

1: Function SingleTableAccess(TableReference T )
2: Preference Set S ← Φ

3: for each Object P in T do

4: Pscore ← DefaultScore
5: for each Object Q in T do

6: cmp ← PairwiseCompare(P ,Q)

7: if cmp = 1 then

8: if Q ∈ S then remove Q from S

9: if IsTransitive then discard Q from T

10: end if

11: if cmp = -1 then

12: if IsTransitive then discard P from T

13: Read next object P (go to line 3)

14: end if

15: end for

16: if IsPreferredObject(P ,S) then AddPreferredToSet(P ,S)

17: end for

18: return S

S to empty. Next, we loop over table T in a block-nested

fashion. Object P is read in the outer loop, where definition

DefaultScore assigns its initial score, while object Q is read

in the inner loop. Each pair of objects P and Q are com-

pared pairwise using the generic function PairwiseCompare,

where the score of object P is updated accordingly. If

PairwiseCompare returns 1 (i.e., Q can never be a preferred

object), and Q currently exists in the preferred set S, then

Q is removed from S. Further, if the preference method is

transitive, Q is discarded from table T mainly for efficiency

sake. Due to transitivity, an object that is dominated by Q is

also dominated by P , thus there is no need to track Q. In the

case that the underlying preference method is not transitive,

we must still consider Q as it may invalidate other objects

with which it has not yet been compared. On the other hand, if

PairwiseCompare returns -1, then P can never be a preferred

object. If transitivity holds, P is discarded from table T and the

next object in the outer loop is read immediately. The argument

here is similar to the case of removing Q should the underlying

preference function be transitive. Finally, If object P is not

discarded in the inner-loop, we call IsPreferredObject to

verify if P is part of the preference answer. As we will see in

Section VI, this is usually a very simple function that performs

an O(1) check based on the properties of P and S without

the need to iterate over S. If this function returns true, P is

added to S. The algorithm concludes by returning S after the

block-nested loop execution finishes.

Performance factors. The complexity of the single-table

access function is mainly influenced by the preference

method’s transitive property. If the method exhibits transitivity,

the complexity of Algorithm 1 is O(n) in the best case and

O(n2) in the worse case. If the method is not transitive, clearly

Algorithm 1 is O(n2). Of course, complexity is also influenced

by the efficiency of the generic function implementation(s).

B. Multi-Table Access

The join operation is one of the most common, and ex-

pensive, operations of a DBMS query. Thus, joins will likely

be common in preference queries when run on a DBMS. For

example, consider a preference query asking about restaurant

attributes price, distance, and rating, where price and distance

are stored in the same table while the rating information is

RS

Preference 

Evaluation

(a) Naive join

RS

Preference 

Evaluation

PruningPruning

(b) Join in FlexPref

Fig. 2. Join operator

stored in a separate table that may be maintained by a third-

party. In this case a join is necessary to fulfill the preference

query. We now discuss how FlexPref handles join queries in

an efficient manner. We do not assume that input data is sorted

or stored in a particular index, thus our method is applicable

to any join method (e.g., hash join, index-nested loop) over

arbitrary join predicates. For presentation purposes, we discuss

the case of a single binary join. However, the concept can be

extended to m-way joins or a tree of binary joins.

Figure 2(a) depicts a naive join-then-evaluate strategy to

execute join preference queries for two tables R and S. The

idea is to perform a complete join over the two input tables

followed by a preference evaluation over the join result. This

approach is inefficient, as it does not attempt to optimize the

underlying join operator. FlexPref improves upon this naive

execution strategy by using the preference criteria functions

to prune tuples from the join input that are guaranteed not to

be in the final answer. Figure 2(b) gives the FlexPref strategy

for handling join queries where pruning is performed at all

join inputs, then, a final preference evaluation is performed

after joining the non-pruned tuples from each table. Pruning

enhances join performance for two main reasons: (a) the

amount of data to be joined from input tables is greatly reduced

due to pruning the input data, and (b) the amount of data

processed by the final preference evaluation after the join is

reduced based on the multiplying factor of the join.

Algorithm 2 outlines the main steps for join operations in

FlexPref where the input is two tables, R and S, to be joined

while the output is the set of preferred objects. First, R and

S are pruned by applying the single table access algorithm

(Algorithm 1) to each join-key group in both tables. For

example, consider the tables R and S in Figure 3(b). Assuming

ID as a join key, table S contains four groups a, b, c, and d

that contains three, three, one, and one tuple(s), respectively.

Also, table R trivially contains four single-tuple groups. In this

case, single table access would be performed locally over each

group in S only, as R’s groups contain only a single tuple. By

doing so, and according to the underlying preference method,

several tuples from each group in S could be pruned, and thus,

do not need to be joined with tuples in R. This main idea is

that we guarantee that these tuples cannot be preferred objects.

Pruning in Algorithm 2 works for the following reason. For

each local join-key group, assume we have a set of preferred

tuples P and non-preferred tuples N . We can say that tuples

in P are qualitatively better than tuples in N in each join-key

group. Given two tables R and S, the tuples in each join-key

group of S will join with the same tuples in R. If the pruned

tuples N in S are qualitatively worse than those in P , then
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Algorithm 2 Multi-Table Access in FlexPref

1: Function MultiTableAccess(Table R, Table S)
2: Rpruned ← Prune R: apply function SingleTableAccess to each join-key group

in R.

3: Spruned ← Prune S: apply SingleTableAccess to each join-key group in S.

4: J ← Join over Rpruned and Spruned using any join method.

5: return SingleTableAccess(J) /* Algorithm 1 */

tuples in N cannot become qualitatively better once joined

with the same data as the tuples in P . Thus, the pruned tuples

N can never be part of the preference query answer.

Once the pruning is done locally for each group in tables

R and S, the rest of the entries in both tables, Rpruned and

Spruned, are joined together using any join method (Line 4 in

Algorithm 2). Finally, FlexPref performs another single table

access over the entire join result J . This is mainly because the

non-pruned tuples form R and S have not yet been compared

against each other. The result of this step is the final result of

the preference query.

Performance factors. Performance of the multi-table pref-

erence join is affected by four main factors. (1) Group By,

if objects are not already sorted by their join key, a group

by operation is necessary. (2) The complexity of single-table

algorithm as it operates on each group. Note that this operation

can be done in parallel, as each join-key group is independent

of one another. (3) The join algorithm. FlexPref can use any

available join method, thus complexity is influenced by the

most efficient join algorithm available. (4) The final single-

table algorithm operating on the join result. In general, pruning

before the join reduces the overall complexity of the join-then-

evaluate operation. However, pruning is not always optimal.

For instance pruning is not effective in a 1:1 join, as no tuple

can be pruned. Section VII experimentally evaluates pruning

effectiveness; we omit an in-depth analysis for space reasons.

C. Sorted List Access

Availability of sorted attribute lists, or ordered indexes (e.g.,

B+-tree), allow for efficient preference evaluation. The idea is

that complete preference answer generation can be guaranteed

after reading only a portion of the sorted data, thus reducing

the I/O overhead compared to query processing over unsorted

or non-indexed data. Figure 3(c) gives an example of this

model where three-dimensional data is presented as three

separate 2-ary lists where each list: (a) includes the tuple ID,

and (b) is sorted based on its attribute. Note that sorted lists

are also an abstraction of an ordered index, such as a B+-

tree. Several techniques have been proposed in the literature

to take advantages of the sorted lists in preference evaluation,

e.g., top-k [15] and skyline [39]. As efficiency is one of

the main goals of FlexPref, this section presents a generic

algorithm for preference evaluation dealing with sorted lists.

Sorted list evaluation requires one extra function be registered

with FlexPref.

The main idea behind sorted list access in FlexPref is as

follows: (1) Tuples are read, one-by-one, from each list in a

round-robin fashion. During this time, we incrementally create

a list P of partial objects. This list stores the id of each tuple

read so far, along with all values of the tuple that have been

Algorithm 3 Sorted List Access in FlexPref

1: Function GeneralSortedAccess(Lists[n], M )
2: stop← false; count← 0

3: Partial Set P ← Θ

4: ∀i≤n O[i]=Θ; F[i]=Θ

5: while stop = false do

6: Read next tuple t from Lists[i] in round-robin order

7: if first value read from List[i] then F[i]=t.val

8: O[i]=t.val

9: Update/Add tuples to P by combining t with existing tuples on t.id

10: if count = M then

11: stop← StopSortedEval(P , O, F ) ; count← 0

12: else

13: increment count

14: end if

15: end while

16: for each incomplete point q ∈ P do

17: ∀j s.t. j is an incomplete dimension of q, make random access to Lists[j] to

complete q

18: end for

19: return SingleTableAccess(P ) /* Algorithm 1 */

read. For example, consider reading one point from each table

D1-D3 in Figure 3(c). In this case, P would store two objects:

(a,5, ,3) and (b, , 2, ). (2) Round-robin processing ends once

a stopping condition is met. This condition is defined by

an extensible function, provided by the preference function

implementation. (3) After stopping, all partial tuples in P are

“completed” by making a random access to each sorted list

to fill in missing attributes. To complete an object (a,5, ,3),

table D2 would be probed to form (a,5,3,3). (4) Finally, we

perform a final preference evaluation over the list P .

To realize this idea, and to take advantage of sorted lists,

FlexPref requires that each preference method defines the

following function in addition to the three functions described

in Section IV.

• StopSortedEval(Set P, Object O, Object F):

Given a set of partial objects P and two virtual objects

O and F , return whether objects currently in P ,

once completed, are sufficient to perform preference

evaluation.

The arguments O and F in StopSortedEval, store the last

and first values read form each input list, respectively. For

example, reading round-robin twice from each list D1 to D3
in Figure 3(c) will produce O=(7,3,3) and F=(5,2,3).

Algorithm 3 outlines the main steps of sorted list preference

evaluation in FlexPref that takes as input a reference to n

decomposed relations (Lists), sorted by attribute value (i.e.,

sorted lists). Each tuple in a list has two attributes, t.id

and t.value; we assume tuples are combined using t.id.

The algorithm also takes as input an integer M , used for

efficiency purposes to restrict the number of calls to function

StopSortedEval to every M th list access. Initialization sets

a boolean value stop to false, an integer count to zero, and

partial set P along with virtual object O and F to null (Lines 2

to 4). Round-robin processing then starts, and continues until

the boolean stop is set to true by StopSortedEval. A tuple

t is read from the current round-robin input list i, and if it

is the first tuple read from i, the ith dimension of F is set

to t.value. Meanwhile the ith dimension of O is also set to

t.value (Lines 7 to 8). One or multiple tuples are then updated

or added to P based on combining t with previously-read

tuples based on t.id. If count equals M , the boolean stop is set
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by calling extensible function StopSortedEval and count

is reset to 0. Otherwise, count is incremented and round-

robin processing continues (Lines 9 to 14). After round-robin

processing, all objects in P are then “completed” by making

a random access to the necessary lists(s) (Lines 16 to 18).

Sorted access processing concludes by performing single-table

preference evaluation over set P using the algorithm outlined

in Algorithm 1 (Line 19).

The method used to build partial objects (Line 9 in Algo-

rithm 3) can be implemented in many ways. For robustness,

FlexPref builds partial objects by abstracting the operation as

an m-way symmetric hash join join [40] between m decom-

posed (i.e., 2-ary) relations. The idea behind the symmetric

hash join is to store a hash table for each input list i. When

a tuple t is read from list i, it is hashed to table i using the

value of its join attribute. Tuple t is then used to probe all

other hash tables to produce partial (or full) objects.

Performance factors. Performance of sorted list access is

influenced by two main factors. (1) The number of sorted

accesses. In the worse case, a total of m ∗ n sorted reads

are required (average case is mn
2

), where m is the number of

attributes and n the number of objects. (2) The efficiency of

the generic StopSortedEval function implementation.

VI. CASE STUDIES

In this section, we provide five case studies for inject-

ing five state-of-the-art preference evaluation methods in

FlexPref, namely, skyline [3], top-k dominating [11], k-

dominance [5], k-frequency [6], and top-k [2]. We chose

these five case studies carefully to cover a wide spectrum

of preference methods. In particular, skyline represents transi-

tive dominance-based preference methods, k-dominance repre-

sents non-transitive dominance-based preference methods, top-

k represents ranking-based preference methods, top-k dominat-

ing represents preference methods that combine ranking-based

and dominance-based preferences, and k-frequency represents

methods that propose object rankings that do not require a

specific function, but base their scoring on inherent properties

of an object (e.g., attribute correlation and subspace search).

Per our discussion in Section IV, FlexPref supports any pref-

erence method that can define answers by comparing tuples

pairwise and/or comparing a tuple to a current preferred set.

For each preference method, we first describe its func-

tionality. Then, we cover the implementation of the three

general functions described in Section IV. The summary of all

functions for the five case studies is given in Table I. Finally,

we give illustrative examples, using Figure 3, for single table,

multi-table, and sorted list access. Due to space, we provide

and in-depth example for the skyline case study, and more

summarized examples for subsequent case studies.

A. Case Study 1: Skylines

Given a dataset D, the objective of skyline preference

evaluation [3] is to find the set of objects S that are not

dominated by any other object in D. An object P is said

to dominate an object Q if P is better than or equal to Q

in all dimensions, and strictly better than Q in at least one

dimension. For example, in Figure 3(a) object a dominates

object e as it is better (i.e., less) in all the three dimensions.

1) General Function Implementation: A skyline implemen-

tation in FlexPref is given in the second column of Table I.

Skyline evaluation does not rank objects. Thus, within our

framework, the skyline score of an object P is binary and is

set to one if P is not dominated, and zero otherwise. Initially,

each object is assumed to be a skyline, thus, each object

has a default score of one. Furthermore, skylines exhibit the

transitive property, thus its transitive definition is set to true.

Function PairwiseCompare changes the score of P to

zero only if it is dominated, and returns the appropriate

value based on the dominance relation between P and Q,

i.e., if P is dominated it cannot be a preferred object, and

vice versa. Q’s score is not updated in PairwiseCompare

per the function definition given in Section IV. Function

IsPreferredObject does not need the reference set S to

determine if P is a preferred object. Instead, it only returns

true if Pscore is one, i.e., P was not dominated by any

object. Function AddPreferredToSet simply appends P to

the end of set S. The stopping condition for StopSortedEval

can be based on previous research in distributed skyline

query processing [39]. This condition is: stop once there is

a complete object Q in set P . At this stopping point, the

complete object Q is equal to, or dominates, the virtual object

O. Furthermore, any new object added to P cannot be better

than O, thus only objects currently in P are skyline candidates.

2) Preference Evaluation: Single Table Execution. Con-

sider the three-dimensional data in Figure 3(a). First, object a

is read, given a default score of 1, and compared pairwise

with all other objects using PairwiseCompare. Function

PairwiseCompare returns -1 when a is compared with object

b, 0 when compared to c, and -1 when compared to d and e.

Thus, b, c, and d are discarded from the data set. Since a is

not dominated, function PairwiseCompare does not change

a’s score to 0. Thus, IsPreferredObject reports that a can

be added to the preference answer. Object c is then read and

also found to be a preferred answer (as it is not dominated

by a, the only object left in the data set). After processing c,

no objects are left in the data set and execution terminates.

Objects a and c exist in the preference set, each with a score

of one, as given in the skyline answer in Figure 3(a).

Multi-Table Execution. In Figure 3(b), pruning removes

tuples (a,5,5) and (b,8,8) from table S prior to the join.

These tuples are not skylines within their join-key groups.

Furthermore, these tuples cannot possibly be skylines when

joined with their corresponding tuples (a,5,5) and (b,7,2) in

table R. For example, joined tuple (a,5,3,5,5) will at least be

dominated by members of its same join group: both (a,5,5,3,4)

and (a,5,5,4,3). Similarly, joined tuple (b,7,2,8,8) would be

dominated by both (b,7,2,4,2) and (b,5,5,4,3).

Sorted Table Access. Round-robin processing can stop after

five reads for the data in Figure 3(c). At this point, set P

contains objects (a,5,3,3) and (b,7,2, ), while object O equals

(7,3,3) and object F equals (5,2,3). Clearly, any new object

added to P cannot be better than virtual object O due to sorted

access, and any new object added to P will be dominated by

the complete object a.
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ID d1 d2 d3

a 5 4 3

b 6 5 3

c 7 2 4

d 8 6 3

e 10 5 11

Skyline
(a,1),(c,1)

Top-K Dominating
(a,3), (b,2)

K-Dominance
(a,1)

K-Frequency

(a,1), (c,3)

Top-K
(a,3.3), (b,3.5)

(a) Single-table example

ID

R

d1 d2

a 5 3

b 7 2

c 8 5

d 10 4

ID

S

d3 d4

a 3 4

a 4 3

a 5 5

b 4 2

b 3 6

b 8 8

c 3 8

d 11 10

(b) Arbitrary join data

ID d1

a 5

b 7

c 8

d 10

ID d2

b 2

a 3

d 4

c 5

ID d3

a 3

c 3

b 4

d 11

e 12

f 13

f 7

e 8

f 12

e 13

(c) Sorted lists

Fig. 3. Case study example data

B. Case Study 2: Top-K Dominating

Given a data set D, the objective of top-k dominating

preference evaluation [11] is to score each object P by its

dominance power, i.e., the number of objects it dominates.

Here, the dominance definition is the same as the skyline

method. The preference answer contains the k objects with

the highest score (i.e., the objects that dominate the most

other objects). As an example, consider objects a and c in

Figure 3(a). Object a has a score of three, as it dominates

objects b, d, and e. Object c has a score of one as it only

dominates e. Object preference is based solely on dominance

power, thus non-skyline objects can be preference answers.

1) General Function Implementation: A top-k dominat-

ing implementation in FlexPref is given in the third col-

umn of Table I. Each object is given a default score

of 0, and IsTransitive returns true. When function

PairwiseCompare finds that P dominates an object Q, it

increments P ’s score by one. An object can never be ruled

out of the preference answer using pairwise comparison, since

P ’s score must be calculated through comparison with all ob-

jects, thus PairwiseCompare always returns zero. Function

IsPreferredObject returns true if P has a score superior to

any of the current k objects in S, or if S contains less than k

objects. Finally AddPreferredToSet adds P in sorted order

in S, removing the old kth object if applicable. A stopping

condition for StopSortedEval can be: stop once there are

k complete objects in set P . While it is possible that some

incomplete objects in P will be superior to the complete

k objects, this stopping condition at least ensures that the

complete k objects dominate any objects not yet added to

P . The unseen objects are equal-to or dominated by object

O, which in turn is equal-to or dominated by each of the k

complete objects.

2) Preference Evaluation: The top-k domination answer is

given in Figure 3(a) assuming k = 2. In Figure 3(b), top-k

domination pruning removes from S tuples (a,5,5) and (b,8,8)

both with scores of zero. These pruned tuples are not in the

top-2 in their local join-key groups. Meanwhile, sorted round-

robin processing can stop after nine reads for the data in

Figure 3(c). At this point, set P contains objects (a,5,3,3),

(b,7,2,4), (c,8, ,3), and (d, ,4, ), while objects O equals (8,4,4)

and object F equals (5,2,3).

C. Case Study 3: K-Dominance

Given a data set D and a value k, k-dominance preference

evaluation [5] finds the set of objects S that are not k-

dominated by any other object in D. k-dominant queries are

similar in spirit to skyline queries, except for the relaxed

notion of dominance: an n-dimensional object P is allowed to

dominate another object Q on any k ≤ n dimensions. When

k = n, a k-dominant query reverts to a skyline query. As an

example, consider objects a and c in Figure 3(a). For k = 2,

object a k-dominates object c since a is better in dimensions

d1 and d3 (less is better). However, when k = 3 neither object

dominates the other as in the case of skylines.

1) General Function Implementation: A k-dominance im-

plementation in FlexPref is given in the fourth column of

Table I. As k-dominance does not rank objects, each object

can either have a score of one if it is not k-dominated, zero

otherwise. Also, k-dominance is not transitive as circular

dominance is possible: an object x can k-dominate an object

y, y can k-dominate an object z, and z can k-dominate x.

Thus, the IsTransitive property is set to false. The function

PairwiseCompare changes the score of P to zero only if it is

k-dominated by Q, and returns the appropriate value based on

dominance relation between P and Q. IsPreferredObject

does not need to reference set S to determine if P is a

preferred object, and returns true if P ’s score is 1 (i.e., P

is not k-dominated). Function AddPreferredToSet simply

appends P to the end of set S. A stopping condition for

StopSortedEval is: stop once set P contains an object Q

with at most k−1 incomplete dimensions, and Q k-dominates

virtual object O, and O does not k-dominate Q (where the

value ∞ is substituted for the incomplete dimensions of Q).

Having an object Q with at most k−1 incomplete dimensions

ensures that it cannot be k-dominated on these incomplete di-

mensions by an object not yet added to P . Furthermore, since

Q k-dominates virtual object O, but O does not k-dominate

Q, then any object not yet added to P is guaranteed to be k-

dominated by Q. Thus the k-dominant answer candidates must

exist in P . We note that for multi-table execution, where tables

R and S have contain dR and dS dimensions each, pruning

computes the dR and dS-dominant answer, and then the k-

dominant answer in the final (i.e., root) preference evaluation.

2) Preference Evaluation: The k-dominance answer is

given in Figure 3(a) assuming k = 2. In Figure 3(b), pruning

will remove from table S tuples (a,5,5) and (b,8,8), as they are

k-dominated within their join-key groups. Similarly, round-

robin processing can stop after five reads for the data in

Figure 3(c), where set P contains objects (a,5,3,3) and (b,7,2, )

while object O equals (7,3,3) and object F equals (5,2,3).
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Skyline [3] Top-k Dominating [11] K-Dominance [5] K-Frequency [6] Top-K [3]

IsTransitive Return true Return true Return false Return true Return true

DefaultScore Return 1 Return 0 Return 1 Return 0 Return 0

PairwiseCompare If P dominates Q,

return 1. If Q dom-

inates P , update

Pscore to 0 and re-

turn -1. Otherwise,

return 0

If P dominates Q, incre-

ment Pscore by 1. Re-

turn 0

If P k-dominates Q, re-

turn 1. If Q k-dominates

P , set Pscore to 0 and

return -1. Otherwise, re-

turn 0.

Increment Pscore based on

the distinct sub-dimensions

where Q dominates P . Re-

turn 0.

Return -1

IsPreferredObject If object score

Pscore equals

1, return true.

Otherwise return

false.

If the cardinality of S is

less than k or Pscore

is superior to the kth

object’s score in S, re-

turn true. Otherwise, re-

turn false.

If object score Pscore

equals 1, return true.

Otherwise return false.

If the cardinality of S is less

than k or Pscore is superior

to the kth object’s score in S,

return true. Otherwise, return

false.

Assign a score to Pscore using

ranking function f . If the cardinal-

ity of S is less than k or Pscore

is superior to the kth object’s score

in S, return true. Otherwise, return

false.

AddPreferredToSet Add object P to the

end of set S.

If S has a cardinality of

k, remove the kth object

from S. Add P to S in

sorted order by Pscore.

Add object P to the end

of set S.

If S has a cardinality of k,

remove the kth object from

S. Add P to S in sorted order

by Pscore.

If S has a cardinality of k, remove

the kth object from S. Add P to

S in sorted order by Pscore.

StopSortedEval Stop once there is a

complete object Q

in set P

Stop once there are k

complete objects in set

P .

Stop once set P con-

tains an object Q with

at most k − 1 incom-

plete dimensions, and Q

k-dominates virtual ob-

ject O, and O cannot k-

dominate Q.

Stop once there is a complete

object Q in set P .

Stop once there are k complete

objects in P that have scores less

than or equal-to a given thresh-

old value T. T = MIN(f (O[1],F[2]

· · · ,F[n]), f (F[1],O[2],· · · ,F[n]),

f (F[1],F[2] · · · ,O[n])).

TABLE I

REALIZING FIVE PREFERENCE METHODS IN FLEXPREF

D. Case Study 4: K-Frequency

Given a data set D, k-frequency preference evaluation [6]

scores each object P by its dominated subspaces: the number

of possible sub-dimensions in which P is dominated. The

preference answer contains the k objects with the lowest

score (i.e., the objects that are dominated in the least number

of possible sub-dimensions). As an example, object a in

Figure 3(a) has a score of one, since it can only be dominated

in a single sub-dimension (d2 by object c). Meanwhile, object

e has a score of 7, since it is dominated in all possible sub-

dimensions by object a (i.e., {d1}, {d2}, {d3}, {d1, d2},

{d1, d3}, {d2, d3}, {d1, d2, d3}).

1) General Function Implementation: A k-frequency im-

plementation in FlexPref is given in the fifth column of

Table I. Each object is given a default score of zero, and

IsTransitive returns true. Dominant sub-dimension count-

ing must be performed carefully for k-frequency. For instance,

in Figure 3(a) object c is dominated on overlapping dimensions

by different objects. That is, c is dominated in sub-dimensions

({d1}, {d3}, {d1, d3}) by object a, and sub-dimension {d3}
by object d. Clearly, over-counting dominated sub-dimensions

is an issue. Thus, function PairwiseCompare must have

access to an extra data structure that stores the dominated sub-

dimensions for each object P . Tracking these sub-dimensions

ensures that an object is scored correctly, i.e., distinct sub-

dimensions can be extracted and counted. So, Function

PairwiseCompare updates Pscore based on the distinct sub-

dimensions where Q dominates P . An object can never be

ruled out of the preference answer using pairwise comparison

since P ’s score must be calculated through comparison with

all objects, thus PairwiseCompare always returns zero.

Function IsPreferredObject returns true if P has a score

superior to any of the current k objects in S or if S contains

less than k objects. AddPreferredToSet adds P in sorted

order in S, removing the old kth object if applicable. A

stopping condition for StopSortedEval is: stop once there is

a complete object Q in set P . This is the same stopping case as

skylines. However, this condition guarantees that an interesting

set of objects exists in P , as any object not yet added to P is

guaranteed to be equal-to or dominated by the complete object

Q (much like the skyline case). Thus, any object not in P is

guaranteed to be dominated in all possible sub-dimensions,

meaning that all unseen objects will have the same score. If

there are not yet k objects in P when the stopping condition

is met, then any arbitrary objects can be added to P as they

have the same score.

2) Preference Evaluation: The k-frequency answer is given

in Figure 3(a) assuming k = 2. In Figure 3(b), k-frequency

pruning will remove from table S tuples (a,5,5) and (b,8,8), as

they both have local scores of three, i.e., they are dominated in

all possible subspaces. Round-robin processing can stop after

five reads for the data in Figure 3(c). At this point, P contains

objects (a,5,3,3) and (b,7,2, ), while object O equals (7,3,3)

and object F equals (5,2,3).

E. Case Study 5: Top-K

Given a set of data D, top-k preference evaluation [2] scores

each data object P using a monotonic ranking function f . The

preference answer contains the k objects with the minimum

score. A monotone function f takes as input multiple attribute

values of and object P and returns a single real number as its

score. For example, for object a in Figure 3(a) and a monotone

function f=( 1

10
∗ (d1 + d2) + 4

5
∗ d3), a’s score is 3.3.

1) General Function Implementation: A top-k implemen-

tation in FlexPref is given in the last column of Table I.

Each object has a default score of zero, and IsTransitive

returns true. Top-k does not rely on pairwise comparison since

an object’s score is determined using only its own attributes.

Thus, PairwiseCompare return -1 by default; doing so will

cause the inner loop to be broken in Algorithm 1, as this

scan is not needed. IsPreferredObject computes object

P ’s score using a monotonic ranking function f , and returns

true if P has a score superior to any of the current k

objects in S, or if S contains less than k objects. Function
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AddPreferredToSet adds P in sorted order in S, removing

the old kth object if applicable. A possible stopping con-

dition for StopSortedEval is based on previous research

that defines threshold score for efficient top-k joins over

sorted lists [15]. Specifically, the condition is: stop once there

are k complete objects in P that have scores less than or

equal-to a given threshold value T. Threshold T is a lower-

bound on the scores of any object not seen so far in set P ,

defined as MIN(f (O[1],F[2],· · · ,F[n]), f (F[1],O[2],· · · ,F[n]),

f (F[1],F[2],· · · ,O[n])). That is, the minimum of the scores

taken from combining the last value seen from each input

with the first values read from every other input.

2) Preference Evaluation: The top-k answer is given in

Figure 3(a) for k = 2, where we aim to minimize scores

based on a ranking function that sums all attribute val-

ues. In Figure 3(b), pruning will removes from S tuples

(a,5,5) and (b,8,8) with scores 10 and 16, respectively. These

pruned tuples are not in the top-2 in their join-key groups.

Round-robin processing can stop after 12 reads for the

data in Figure 3(c). At this point, set P contains (a,5,3,3),

(b,7,2,4), (c,8,5,3), (d,10,4,11), while O=(10,5,11), F=(5,2,3),

and threshold T = 13.

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the perfor-

mance of FlexPref. Our experiments involve the following

implementations: (1) The skyline, k-dominance, and top-

k preference evaluation methods implemented in FlexPref

according to the function definitions given in Section VI.

These implementations are denoted FlexSKY , FlexKDOM , and

FlexTK , respectively. (2) The custom implementations of the

skyline block nested loop operator (CustSKY ) [3] and the

two-scan K-dominance algorithm (CustKDOM ) [5]. We also

implemented the custom multi-relational skyline join operator

(JCustSKY ) [41] in order to fairly evaluate our multi-relational

preference execution framework. These custom implementa-

tions make for the fairest comparison against our framework as

they do not assume sorted or indexed data. We note that for the

case of top-k, no custom implementation exists that assumes

completely unsorted/unranked input [18]. An exception to

this claim is the case involving sorted list access, which

we discuss in Section VII-B. We perform experiments for

three query scenarios: (1) Multi-table access (Section VII-A),

(2) Sorted list access (Section VII-B), and (3) Single table

access (Section VII-C),

Our FlexPref framework, along with the custom skyline

join algorithm [41], are implemented in the backend execu-

tor (query processor) of the PostgreSQL 8.3.5 open-source

database [19]. All other algorithms are implemented as exten-

sible user-defined functions in PostgreSQL. The user-defined

function approach is the fairest implementation method for

our counterparts, as it pushes the algorithms as close to the

database as possible. The experiment machine is an Intel Core2

8400 at 3Ghz with 4GB of RAM running Ubuntu Linux 8.04.

We use the generator specified in [3] to generate synthetic data

sets for all experiments. Unless otherwise mentioned, the data

contain six attributes, where the attribute values are generated
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Fig. 4. Multi-table FlexPref join

independent of one another. We experiment with data set sizes

ranging from 10K to 3M tuples. The value of k for the k-

dominance preference is set at 4. For the top-k method, the

default number of answers (k) is set to 20. Our performance

metric is the elapsed time reported by the PostgreSQL EXPLAIN

ANALYZE command.

A. Multi-Table Access

In these experiments, we study the impact of the FlexPref

multi-table preference evaluation framework that prunes join

input tuples, and then compare the FlexPref implementations

to CustSKY and CustKDOM , as well as the custom skyline

join algorithm JCustSKY . The general SQL signature of the

experiment query is:

Select * From T1, T2 WHERE T1.id=T2.id

Preferring T1.d1 AND T1.d2 AND T1.d3

AND T2.d1 AND T2.d2 AND T2.d3

We omit the using clause as multiple preference methods are

tested. The join is an m:m binary join where tables T1 and T2

contain three-attribute tuples, plus an id, while preference is

evaluated over all six attributes. Each table contains 1K unique

ids, with an equal number of tuples assigned to each join-key

group. We increase the size of each table from 10K to 100K

that increases the join ratio from 10:10 to 100:100, as well as

the join result cardinality.

1) Effect of Pruning: This experiment studies the effect

of pruning join inputs in FlexPref’s multi-table execution.

We study the skyline, and top-k implementations in FlexPref

using the naive join approach (abbr. FlexSKY , and FlexTK )

against the optimized pruned approach (abbr. JFlexSKY and

JFlexTK). For space purposes, we do not discuss the k-

dominance implementation, however, it exhibits similar be-

havior to the skyline case. Figure 4 gives the runtimes for the

skyline (Figure 4(a)), and top-k (Figure 4(b)) methods. Clearly,

pruning is beneficial to the FlexPref framework, keeping

preference evaluation scalable for multi-table queries. For the

skyline method, tuples are pruned throughout the progression

of join ratios, reducing the workload of the join and final post-

join preference evaluation. For the case of top-k (with default

k = 20), pruning takes effect after the 20:20 ratio. For smaller

ratios, no join input tuples can be pruned as join-key groups

contain less than 20 tuples, thus pruning causes an overhead

for these cases.

2) Comparison With Custom Algorithms: Given that prun-

ing in FlexPref is beneficial to multi-table preference queries,

we now compare the optimized skyline and k-dominance
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Fig. 5. Multi-table: FlexPref vs. Specialized

FlexPref implementations, JFlexSKY and JFlexKDOM , against

CustSKY and CustKDOM that must perform preference eval-

uation after the join (i.e., on-top of the query plan). We

also compare FlexPref against the specialized skyline join

operator [41], JCustSKY ). Figures 5(a) and 5(b) give the

runtimes for skyline and k-dominance methods, respectively.

These results clearly highlight the advantages of FlexPref. The

optimized FlexPref implementations exhibit scalable behavior

as the join ratio (and data size) increases. FlexPref is superior

to the CustSKY and CustKDOM methods that represent an

on-top approach for the multi-table case. Both CustSKY and

CustKDOM cannot reduce the input to the join, thus must pro-

cess the complete join result. Interestingly, JFlexSKY exhibits

comparable performance to the custom skyline join JCustSKY .

These results are promising, and show that (1) FlexPref is

clearly advantages for arbitrary DBMS queries compared to

an outside (or on-top) and (2) competitive with specialized

approaches for more sophisticated queries.

We do not compare our JFlexKDOM method against a

custom k-dominance join algorithm, as none exist. The only

possible implementation for k-dominance in the case of arbi-

trary multi-relational queries is to perform evaluation on-top

of the query plan. This fact highlights the strength of FlexPref.

Once registered with FlexPref, any preference method gains

the advantages of being coupled with non-trivial database

operations. This experiment highlights the efficiency gains by

taking the general extensible approach of FlexPref.

B. Sorted List Access

This experiment studies the efficiency of the general sorted

access preference evaluation algorithm outlined in Section V-

C for the skyline and top-k methods. For space purposes,

we do not plot the k-dominance experiment, however, it

exhibits similar behavior to the skyline case. The general SQL

signature of the experiment query is:

Select * From T1,...,T6

Where T1.id=T2.id=T3.id=T4.id=T5.id=T6.id

Preferring T1.d AND ... AND T6.d

We again omit the using clause as multiple preference

methods are tested. The join is 1:1 that combines six 2-ary

tables T1-T6, each with a primary key id and attribute d; all

tables are sorted on d. We compare the FlexPref optimized

join implementation (JFlexSKY and JFlexTK) to the FlexPref

sorted list implementation for the skyline and top-k methods

(SLFlexSKY and SLFlexTK ). For the skyline case, we also

compare with JCustSKY . We do not implement a custom

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

500K 1M 1.5M 2M 2.5M 3M

T
im

e
 (

s
e
c
)

Data Size

JFlexSKY
SLFlexSKY
JCustSKY

(a) Skyline

 0

 5

 10

 15

 20

 25

 30

 35

500K 1M 1.5M 2M 2.5M 3M

T
im

e
 (

s
e
c
)

Data Size

JFlexTK
SLFLexTK

(b) Top-K

Fig. 6. Sorted list access

join algorithm for top-k, as the FlexPref top-k sorted list

impelementation actually reduces to an m-way version of the

custom join specified in [15]. Figure 6 gives the runtimes

for both skyline and top-k as the table sizes increase from

500K to 3M tuples. The results confirm the efficiency of the

general sorted list access framework of FlexPref. As input size

increases, the sorted list method makes use of the stopping

condition in order to end I/O earlier during processing. Of

course, The FlexPref join framework must read every input

tuple in order to perform the full join. Interestingly, the custom

skyline join JCustSKY shows poorer performance than both

FlexPref implementations. This poor performance is due to

JCustSKY needing to materialize every intermediate join result

in the query tree in order to find a global skyline for the input

to the subsequent join.

C. Single-Table Access

In this experiment, we study the performance of the skyline

and k-dominance preference implementations for a single table

access query. The general SQL signature is:

Select * From T

Preferring T.d1 AND ... AND T.d6

Figures 7(a) and 7(b) give the runtimes for the skyline and

k-dominance methods, respectively, as the table cardinality is

increased from 500K to 3M tuples. Both the FlexPref skyline

and k-dominance implementations (FlexSKY and FlexKDOM )

show inferior performance to their counterpart custom imple-

mentations (CustSKY and CustKDOM ). Implemented as user-

defined functions, both CustSKY and CustKDOM resemble

a specialized approach for this experiment as they are de-

signed to read data from a single, unsorted table. It is not

the objective of FlexPref to win over these very specialized

implementations for this case of single table access. The power

of FlexPref appears in: (a) its support for optimizing more

sophisticated queries, as we studied in previous experiments,

where any preference method in FlexPref is coupled with non-

trivial database operations, and (b) its practical approach to

implementing a wide array of preference evaluation methods,

which would require a great amount of effort without Flex-

Pref. Having said so, FlexSKY and FlexKDOM display linear

behavior similar to CustSKY and CustKDOM , as the FlexPref

single-table access algorithm cuts its inner loop immediately

when an outer object is found to be dominated, thus staying

competitive with the customized algorithms [3], [5].
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Fig. 7. Single-table preference evaluation

VIII. CONCLUSION

This paper presented FlexPref, a general framework for

extensible preference evaluation. FlexPref is implemented in

the query processor of a database, and supports a multitude

of preference evaluation methods. Implementing a new pref-

erence method requires the registration of only three func-

tions that capture its essence. Once integrated, the preference

method “lives” at the core of the database, enabling the

efficient execution of preference queries involving common

database operations. We provided the details of how FlexPref

is integrated into three database operations: single-table access,

multi-table access involving arbitrary join patters, and sorted

list access. We detailed the implementation of five non-trivial,

state-of-the-art preference methods inside FlexPref. We also

provided experimental evidence that verified the ability of

FlexPref to provide efficient query support for arbitrary DBMS

queries. FlexPref lays the groundwork for further general

functionality support for preference evaluation in databases,

including, but not limited to: uncertainty handling, indexing,

and integration with aggregate operators.
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